Inertia Reference Guide

Function Reference for Inertia v1.0 real time 3D rendering system

Document Version 1.0

September 22 1997

Copyright (1996(1997 Alex Chalfin. All Rights Reserved

�

Table of Contents

Introduction								4

Initialization Functions						5

	InitInertia							5

	ShutdownInertia						6

	SetAspectRatio							7

Vector Object Functions						8

	InitVectorObject						8

AllocObject							9

FreeVectorObject						10

CopyVectorObject						11

CalcBoundaryVolume						12

LoadGVO							13

SetAbsoluteRotation						14

SetDeltaRotation						15

SetAbsoluteLocation						16

SetDeltaLocation						17

SetBaseColor							18

SetPolygonColor						19

SetObjectTexture						20

SetPolygonTexture						21

SetObjectPhongMap						22

SetPolygonPhongMap						23

SetRenderMask						24

SetCull								25

View Functions							26

InitView							26

FreeView							27

GetObjectAsCamera						28

SetFocalLength							29

SetFieldOfView							30

SetViewFustrum						31

SetViewPort							32

SetViewLocation						33

SetFocusPoint							34

Rendering Functions						35

AddToRenderList						35

Render								36

Light Source Functions						37

PushLightSource						37

PopLightSource						38

RotateLightSource						39

Texture and Table Functions					40

LoadIntensityTable						40

FreeIntensityTable						41

LoadTransparencyTable					42

FreeTransparencyTable						43

LoadPCXTexture						44

FreeTexture							45

MakePhongMap						46

LoadPalette							47

GetTexturePalette						48

�
Introduction

	This document is a complete function reference to the Inertia 3D rendering system.

Any references to “TMT Pascal version” are considered “Inertia” and represent the libraries for the TMT Pascal compiler v2.02.

Any references to “Watcom C version” are considered “Inertia” and represent the libraries for the Watcom C/C++ v10.x compiler.

Any references to “Borland version” are considered “Inertia/16” and are no longer supported. The should not appear anywhere in this document.

�
InitInertia

Name

	InitInertia - Initializes the Inertia rendering system.

Specification

	C		- void InitInertia(void);

	TMT		- Procedure InitInertia;

Description

	This function initializes internal function pointers to the polygon fillers, initializes the render list, the light source stack, and otherwise puts Inertia into a known state. This must be the first function called by your program before any Inertia functionality can be used.

Notes

	InitInertia does not allocate any memory. It just initializes variables (sets pointers to NULL/Nil) and exits. No return value is necessary, this function always succeeds.

See Also

	ShutdownInertia

�
ShutdownInertia

Name

	ShutdownInertia - de-allocates all memory buffers used within Inertia

Specification

	C		- void ShutdownInertia(void);

	TMT 		- Procedure ShutdownInertia;

Description

	During the course of execution, Inertia allocates memory as it is needed (the RenderList and vertex/polygon pools). Calling this function at the end of your program execution will properly

de-allocate these memory buffers.

Notes

	The memory buffers used by Inertia initially start out empty.

See Also

	InitInertia

�
SetAspectRatio

Name

	SetAspectRatio - sets the pixel aspect ratio

Specification

	C		- void SetAspectRatio(float Ratio);

	TMT 		- Procedure SetAspectRatio(Ratio : Single);

Parameters

	Ratio		- New aspect ratio

Description

	Sets the aspect ratio. In mode 13h, the aspect ratio is 0.9 which is the default. ((320/200) / (640/480)).

�
InitVectorObject

Name

	InitVectorObject - Initializes a vector object

Specification

	C		- void InitVectorObject(VectorObject *Obj);

	TMT		- Procedure InitVectorObject(Var Obj : VectorObject);

Parameters

	Obj 		- The vector object to initialize.

Description

	Initializes internal variables of the VectorObject structure. Sets the fields to a known state.

Notes

	InitVectorObject does not perform any memory allocations.

See Also

	FreeVectorObject, AllocObject, CopyVectorObject, LoadGVO

�
AllocObject

Name

	AllocObject 	- Allocates memory for geometry data

Specification

	C		- int AllocObject(VectorObject *Obj, int NumVert, int NumPoly);

	TMT		- Function AllocObject(Var Obj : VectorObject; NumVert, NumPoly : Longint) : Longint;

Parameters

	Obj 		- The Object to allocate memory space for.

	NumVert	- Number of vertices to allocate.

	NumPoly	- Number of polygons to allocate.

Return

	I_OK 		- Data was allocated

	I_MEMERR	- Not enough memory for object

Description

	AllocObject allocates the memory blocks to store all of the geometry data for the number of vertices and number of polygon specified.

Notes

	This function is called automatically from CopyVectorObject and LoadGVO

See Also

	FreeVectorObject, CopyVectorObject, LoadGVO

�
FreeVectorObject

Name

	FreeVectorObject	- Frees memory used by geometry data within a vector object

Specification

	C		- void FreeVectorObject(VectorObject *Obj);

	TMT		- Procedure FreeVectorObject(Var Obj : VectorObject);

Parameters

	Obj	 	- VectorObject to free geometry

Description

	Frees the geometry data pointed to by the VectorObject structure. This includes vertices, polygons, texture coordinates, etc.

See Also

	AllocObject, CopyVectorObject, LoadGVO

�
CopyVectorObject

Name

	CopyVectorObject - Copies all VectorObject fields to another object.

Specification

	C		- int CopyVectorObject(VectorObject *Source, VectorObject *Dest);

	TMT		- Function CopyVectorObject(Var Source, Dest : VectorObject) : Longint;

Parameters

	Source		- The object to copy

	Dest		- Un-initialized, un-allocated VectorObject struct to copy to.

Return

	I_OK		- Object was successfully copied

	I_MEMERR	- Not enough memory for new object

Description

	This function allocates the Dest object with the number of vertices and polygons of the source object, copies all geometry and flags. The resultant object is an exact duplicate of the source object.

See Also

	AllocObject, FreeVectorObject, LoadGVO

�
CalcBoundaryVolume

Name

	CalcBoundaryVolume	- Calculates the radius of the object’s bounding sphere

Specification

	C		- void CalcBoundaryVolume(VectorObject *Obj);

	TMT		- Procedure CalcBoundaryVolume(Var Obj : VectorObject);

Parameters

	Obj		- Object to calculate the boundary volume of

Description

	This function calculates the radius of the spherical boundary sphere for the specified object.

Notes

	The boundary sphere is used to calculate view volume dependencies. CalcBoundaryVolume is automatically called by LoadGVO.

See Also

	LoadGVO

�
LoadGVO

Name

	LoadGVO 	- Loads a .GVO file from disk

Specification

	C		- int LoadGVO(VectorObject *Obj, char *Filename, int Fofs);

	TMT		- Function LoadGVO(Var Obj : VectorObject; Filename :string; Fofs : Longint) : Longint;

Parameters

	Obj		- Object structure to load geometry into.

	Filename	- Name of the GVO file to load.

	FOfs 		- Offset into file to start loading object.

Return

	I_OK		- Object successfully loaded from file.

	I_MEMERR	- Not enough memory for object.

	I_FILEERR 	- File could not be opened (invalid file name).

	I_FORMATERR - Not a GVO file.	

Description

	This function loads a .GVO file from disk. If an object is loaded from disk, AllocObject and CalcBoundryVolume are called from within LoadGVO so you do not need to call them separately.

Notes

	GVO files can be created with the GVO.EXE program.

�
SetAbsoluteRotation

Name

	SetAbsoluteRotation - Sets the orientation of an object by specifying 3 angles

Specification

	C		- void SetAbsoluteRotation(VectorObject *Obj, float xa, float ya, float za);

	TMT		- Procedure SetAbsoluteRotation(Var Obj : VectorObject; xa, ya, za : Single);

Parameters

	Obj		- Object to set orientation

	xa, ya, za	- x, y, and z angles to rotate.

Description

	Rotates the object around the x, y, and z axis by the provided angle. Under the Watcom C and TMT Pascal versions of Inertia, the angles are in radians.

See Also

	SetDeltaRotation

�
SetDeltaRotation

Name

	SetDeltaRotation - Changes the orientation of an object by specifying 3 angles

Specification

	C		- void SetDeltaRotation(VectorObject *Obj, float xa, float ya, float za);

	TMT		- Procedure SetDeltaRotation(Var Obj : VectorObject; xa, ya, za : Single);

Parameters

	Obj		- Object to set orientation

	xa, ya, za	- x, y, and z angles to rotate.

Description

	Changes the rotation of the object around the x, y, and z axis by the provided angle. This performs a matrix concatenation operation to maintain inter-axis dependencies necessary for proper rotation. Under the Watcom C and TMT Pascal versions of Inertia, the angles are in radians.

See Also

	SetAbsoluteRotation

�
SetAbsoluteLocation

Name

	SetAbsoluteLocation - Sets the location of an object by specifying a point in 3d

Specification

	C		- void SetAbsoluteLocation(VectorObject *Obj, float xl, float yl, float zl);

	TMT		- Procedure SetAbsoluteLocation(Var Obj : VectorObject; xl, yl, zl : Single);

Parameters

	Obj		- Object to set location

	xl, yl, zl		- 3d point for new location of object.

Description

	Places the object at position (x, y, z). Under the Watcom C and TMT Pascal versions of Inertia, the locations are in floating point.

See Also

	SetDeltaLocation

�
 SetDeltaLocation

Name

	SetDeltaLocation - Changes the location of an object by specifying a delta vector in 3d

Specification

	C		- void SetDeltaLocation(VectorObject *Obj, float xl, float yl, float zl);

	TMT		- Procedure SetDeltaLocation(Var Obj : VectorObject; xl, yl, zl : Single);

Parameters

	Obj		- Object to change location

	xl, yl, zl		- 3d direction vector for object translation.

Description

	Changes the object’s location by the vector (x,y,z). Under the Watcom C and TMT Pascal versions of Inertia, the deltas are in floating point.

See Also

	SetAbsoluteLocation

�
SetBaseColor

Name

	SetBaseColor - Sets the color of the object.

Specification

	C		- void SetBaseColor(VectorObject *Obj, char Color);

	TMT		- Procedure SetBaseColor(Var Obj : VectorObject; Color : Byte);

Parameters

	Obj		- Object to set color

	Color		- color to use

Description

	Changes the base color of the object. This can be any of the 256 colors. The rest of the colors generated from shading and lighting are taken from the internal shade table.

Notes

	This function sets the colors of all the polygons in the object.

See Also

	SetPolygonColor

�
SetPolygonColor

Name

	SetPolygonColor - Sets the color of an individual polygon in an object.

Specification

	C		- void SetPolygonColor(VectorObject *Obj, int Poly, char Color);

	TMT		- Procedure SetPolygonColor(Var Obj : VectorObject; Poly : Longint; Color : Byte);

Parameters

	Obj		- Object to set color

	Poly		- Polygon to set color of

	Color		- color to use

Description

	Changes the color of the polygon indexed by “Poly” in the object. This can be any of the 256 colors. The rest of the colors generated from shading and lighting are taken from the internal shade table.

See Also

	SetBaseColor

�
SetObjectTexture

Name

	SetObjectTexture - Sets the texture of the object.

Specification

	C		- void SetObjectTexture(VectorObject *Obj, int Texture);

	TMT		- Procedure SetObjectTexture(Var Obj : VectorObject; Texture : Longint);

Parameters

	Obj		- Object to set texture

	Texture		- texture index to use.

Description

	Changes the texture the object. The texture parameter is actually an index into the texture table.

Notes

	This function sets the texture of all the polygons in the object.

See Also

	SetPolygonTexture

�
SetPolygonTexture

Name

	SetPolygonTexture - Sets the texture of an individual polygon in an object.

Specification

	C		- void SetPolygonTexture(VectorObject *Obj, int Poly, char Color);

	TMT		- Procedure SetPolygonTexture(Var Obj : VectorObject; Poly, Texture : Longint);

Parameters

	Obj		- Object to set texture

	Poly		- Polygon to set texture of

	Texture		- texture to use

Description

	Changes the texture of the polygon indexed by “Poly” in the object. The texture parameter is actually an index into the texture table.

See Also

	SetObjTexture

�
SetObjectPhongMap

Name

	SetObjectPhongMap - Sets the object’s environment map for phong shading.

Specification

	C		- void SetObjectPhongMap(VectorObject *Obj, int Texture);

	TMT		- Procedure SetObjectPhongMap(Var Obj : VectorObject; Texture : Longint);

Parameters

	Obj		- Object to set phong map.

	Texture		- texture index to use.

Description

	Changes the phong map of the object. The texture parameter is actually an index into the texture table.

Notes

	Any texture can be used as the phong map. However, all values in the texture must be in the range 0..63 for it to work correctly. The MakePhongMap function will generate a normal circular highlight map for you.

See Also

	SetPolygonPhongMap, MakePhongMap

�
SetPolygonPhongMap

Name

	SetPolygonPhongMap - Sets the phong map of an individual polygon in an object.

Specification

	C		- void SetPolygonPhongMap(VectorObject *Obj, int Poly, char Color);

	TMT		- Procedure SetPolygonPhongMap(Var Obj : VectorObject; Poly, Texture : Longint);

Parameters

	Obj		- Object to set texture

	Poly		- Polygon to set texture of

	Texture		- texture to use

Description

	Changes the phong map of the polygon indexed by “Poly” in the object. The texture parameter is actually an index into the texture table.

Notes

	Any texture can be used as the phong map. However, all values in the texture must be in the range 0..63 for it to work correctly. The MakePhongMap function will generate a normal circular highlight map for you.

See Also

	SetObjPhongMap, MakePhongMap

�
SetRenderMask

Name

	SetRenderMask - selects the rendering style for an object.

Specification

	C		- void SetRenderMask(VectorObject *Obj, int Mask);

	TMT		- Procedure SetRenderMask(Var Obj : VectorObject; Mask : Longint);

Parameters

	Obj		- object to set rendering style.

	Mask		- style to use.	

Description

	This function selects the rendering style for an object. A rendering style is chosen by combining some of the constants provided by the engine. Here are the constants:

Shading constants			Surface constants

UNSHADED				SMOOTH

AMBIENT				TEXTURE

LAMBERT				PERSPTEXTURE

GOURAUD				REFLECTION

PHONG

In addition to these constants, a constant TRANSPARENT can also be used to set the object to 50% transparent. These constants are combined using a bitwise or, or an addition. Here are a few examples of valid rendering masks:

AMBIENT + TEXTURE 			(Pascal or C)

LAMBERT or SMOOTH or TRANSPARENT	(Pascal)

PHONG | TEXTURE 			(C)

	

Notes

	You can only select one option from each of the categories. Choosing (SMOOTH + TEXTURE) is undefined and will cause undesirable results.

�
SetCull

Name

	SetCull	- Sets the culling flag of the object

Specification

	C		- void SetCull(VectorObject *Obj, int Cull);

	TMT		- Procedure SetCull(Var Obj : VectorObject; Cull : Longint);

Parameters

	Obj		- Object to set culling flags.

	Cull		- culling selection.

Description

	This functions permits the object to be culled or not. If the object is culled, all back facing polygons will be removed, otherwise all polygons in the object will be drawn. In the case of the TMT Pascal and Watcom C versions of Inertia. Set the cull parameter to zero to turn off culling, set to one to turn on culling.

Notes

	The default mode for culling is to get rid of back facing polygons. Generally the only time you want to turn off culling is when the transparency of the object is turned on.

�
InitView

Name

	InitView 	- Initializes a view structure.

Specification

	C		- void InitView(ViewObject *View);

	TMT		- Procedure InitView(Var View : ViewObject);

Parameters

	View		- The view structure to initialize

Description

	This function initializes the view structure to a known state. This state includes a 320x200 view port, a location at (0,0,0) with no rotation. In the case of the TMT Pascal and Watcom C versions, a 60 degree field of view is also set.

See Also

	FreeView

�
FreeView

Name

	FreeView 	- de-initializes a view structure.

Specification

	C		- void FreeView(ViewObject *View);

	TMT		- Procedure FreeView(Var View : ViewObject);

Parameters

	View		- The view structure to free

Notes

	Starting with v1.0 of Inertia, this function is a dummy function left in for API compatibility.

The view structure no longer requires memory buffers.

See Also

	InitView

�
GetObjectAsCamera

Name

	GetObjectAsCamera 	- copies an object’s location and orientation to the camera.

Specification

	C		- void GetObjectAsCamera(ViewObject *View, VectorObject *Obj);

	TMT		- Procedure GetObjectAsCamera(Var View : ViewObject; Obj : VectorObject);

Parameters

	View		- The view structure to copy orientation information into.

	Obj		- Object to copy data from.

Description

	This function copies the object’s location and rotation matrix into the view structure. Using this function allows any object to be used as a camera at any time.

�
SetFocalLength

Name

	SetFocalLength - Sets the focal length of the camera lens.

Specification

	C		- void SetFocalLength(ViewObject *View, float FocalLength);

	TMT		- Procedure SetFocalLength(Var View : ViewObject; FocalLength : Single);

Parameters

	View		- view structure to set focal length of

	FocalLength 	- focal length of lens in millimeters.

Description

	This function sets the focal length of the camera lens. The focal length is linked to the field of view. The default focal length is 42.2mm which results in a 60 degree field of view. Normally you would use the SetFieldOfView function instead of this. This function is here because the conversion from focal length to field of view is simple.

See Also

	SetFieldOfView

�
SetFieldOfView

Name

	SetFieldOfView - Sets the field of view of the camera lens.

Specification

	C		- void SetFieldOfView(ViewObject *View, float FOV);

	TMT		- Procedure SetFieldOfView(Var View : ViewObject; FOV : Single);

Parameters

	View		- view structure to set field of view

	FOV		- field of view in degrees.

Description

	This function sets the field of view of the camera. The FOV parameters must be in degrees. This function is called automatically by SetFocalLength.

See Also

	SetFocalLength

�
SetViewFustrum

Name

	SetViewFustrum - Sets the minimum and maximum Z values in the view.

Specification

	C		- void SetViewFustrum(ViewObject *View, float MinZ, float MaxZ);

	TMT		- Procedure SetViewFustrum(Var View : ViewObject; MinZ, MaxZ : Single);

Parameters

	View		- view structure to set fustrum Z values

	MinZ		- minimum Z value object is visible.

	MaxZ		- maximum Z value object is visible.

Description

	This function sets the near and far viewing plane. The default values (set in InitView) usually suffice.

Notes

	The Values passed to SetViewFustrum are floating point on the TMT Pascal and Watcom C versions of Inertia.

See Also

	SetViewPort

�
SetViewPort

Name

	SetViewPort - Sets the viewing window of the camera.

Specification

	C		- void SetViewPort(ViewObject *View, float x1, float y1, float x2, float y2, int Update);

	TMT		- Procedure SetViewPort(Var View : ViewObject; x1, y1, x2, y2 : Single; Update : Boolean);

Parameters

	View		- view structure to set viewing window

	x1, y1, x2, y2	- viewing rectangle.

	Update		- flag to update the center of projection.

Description

	This function sets the screen viewport for the current batch of rendering. The update flag allows the center of projection to be the center of the viewport. Setting to false keeps the current center of projection, setting to true updates the center of projection to the center of the new viewport. The default values are a full 320x200 window.

Notes

	The viewport determines the clipping planes. It is important these values don’t exceed the size of your virtual rendering page. No checks on this are performed and a crash would most likely result in not following this.

�
SetViewLocation

Name

	SetViewLocation - Sets the location of the camera.

Specification

	C		- void SetViewLocation(ViewObject *View, float x, float y, float z);

	TMT		- Procedure SetViewLocation(Var View : ViewObject; x, y, z : Single);

Parameters

	View		- view structure to set viewing window

	x, y, z		- new location for the camera.

Description

	This function places the camera at the point (x,y,z). Under the Watcom C and TMT Pascal versions of Inertia, the locations are in floating point.

See Also

	GetObjectAsCamera

�
SetFocusPoint

Name

	SetFocusPoint - Sets the point for the camera to look at.

Specification

	C		- void SetFocusPoint (ViewObject *View, float tx, float ty, float tz, float Roll);

	TMT		- Procedure SetViewLocation(Var View : ViewObject; x, y, z, Roll : Single);

Parameters

	View		- view structure to set target point

	x, y, z		- target point for the camera.

	Roll		- rotation around the Z axis.

Description

	This function makes the camera look at the point (x,y,z) with a roll around its Z axis as specified by the roll parameter. Under the Watcom C and TMT Pascal versions of Inertia, the target point is in floating point, and the Roll value is in radians.

�
AddToRenderList

Name

	AddToRenderList - Adds a vector object to the current render list.

Specification

	C		- void AddToRenderList(ViewObject *View, VectorObject *Obj);

	TMT		- Procedure AddToRenderList(View : ViewObject; Var Obj : VectorObject);

Parameters

	View		- view containing the current camera

	Obj		- object to add to the render list.

Description

	This function does everything that is necessary to put the object’s polygons in the proper position given the light sources, the camera and the object’s rotation and location. The object’s polygons are then added to the internal render list.

Notes

	This is the function that handles the shareware limitation of 500 visible polygons.

See Also

	Render

�
Render

Name

	Render - Draws the polygons in the render list and resets internal counters.

Specification

	C		- void Render(char *VPage, int x, int y);

	TMT		- Procedure Render(Vpage : Pointer; x, y, : Longint);

Parameters

	Vpage		- a pointer to the video page to render to

	x, y		- width and height of video page (TMT, Watcom C only)

	View		- Viewport to render to. (Borland only).

Description

	This function sorts and renders all of the polygons in the display list. Under the TMT Pascal version and Watcom C version of Inertia, a pointer to an arbitrary sized virtual page and the dimensions of that page are passed in.

Notes

	The number of polygons in the render list is limited only be memory for the 32-bit versions of Inertia. With the shareware version of the engine, a limit of 500 is enforced.

See Also

	AddToRenderList

�
PushLightSource

Name

	PushLightSource - Pushes a light source onto the internal light source stack.

Specification

	C		- void PushLightSource(float x, float y, float z);

	TMT		- Procedure PushLightSource(x, y, z : Single);

Parameters

	x, y, z		- direction vector for new light source.

Description

	This function adds a light source to the internal list. The vector passed in is normalized before it is added to the list.

Notes

	A stack is used for light sources to facilitate easy management. When rotating light sources via RotateLightSource, you choose which light source to rotate, it isn’t fixed to the top of the stack.

See Also

	PopLightSource, RotateLightSource

�
PopLightSource

Name

	PopLightSource - Removes the top light source from the stack.

Specification

	C		- void PopLightSource(void);

	TMT		- Procedure PopLightSource;

Description

	This function removes the top light source from the internal light stack.

See Also

	PushLightSource, RotateLightSource

�
RotateLightSource

Name

	RotateLightSource - Rotates a light source.

Specification

	C		- void RotateLightSource(int Index, float xa, float ya, float za);

	TMT		- Procedure RotateLightSource(Index : Longint; xa, ya, za : Single);

Parameters

	Index		- index in light list of light source to rotate.

	xa, ya, za	- x, y, and z angles to rotate by.

Description

	This function rotates the light source indexed by the Index parameter and rotates it by xa, ya, za around each respective axis. In the 32-bit version of Inertia, the three angles are in radians.

See Also

	PopLightSource, PushLightSource

�
LoadIntensityTable

Name

	LoadIntensityTable 	- Loads an intensity table from disk.

Specification

	C		- int LoadIntensityTable(char *Filename, int FOfs);

	TMT		- Function LoadIntensityTable(Filename : String; FOfs : Longint) : Longint;

	

Parameters

	Filename 	- Name of the file to load intensity table from

	FOfs		- file offset to start reading from.

Returns

	I_OK		- Operation was successful.

	I_MEMERR	- Not enough memory for intensity table

	I_FILEERR	- Could not open file

Description

	Loads a 256x64 shade table from disk. The entire rendering system is based on the shade table, so loading one is a necessity.

Notes

	Intensity Tables can be created with the STab program.

See Also

	FreeIntensityTable

�
FreeIntensityTable

Name

	FreeIntensityTable 	- Frees the intensity table from memory.

Specification

	C		- void FreeIntensityTable(void);

	TMT		- Procedure FreeIntensityTable;

	

Description

	Frees the intensity table from memory.

See Also

	LoadIntensityTable

�
LoadTransparencyTable

Name

	LoadTransparencyTable - Loads a transparency table from disk.

Specification

	C		- int LoadTransparencyTable(char *Filename, int FOfs);

	TMT		- Function LoadTransparencyTable(Filename : String; FOfs : Longint) : Longint;

	

Parameters

	Filename 	- Name of the file to load transparency table from

	FOfs		- file offset to start reading from.

Returns

	I_OK		- Operation was successful.

	I_MEMERR	- Not enough memory for transparency table

	I_FILEERR	- Could not open file

Description

	Loads a 256x256 transparency table from disk. A transparency table is necessary whenever transparent rendering is used.

Notes

	Transparency Tables can be created with the Trans program.

See Also

	FreeTransparncyTable, SetRenderMask

�
FreeTransparencyTable

Name

	FreeTransparencyTable - Frees the transparency table from memory.

Specification

	C		- void FreeTransparencyTable(void);

	TMT		- Procedure FreeTransparencyTable;

	

Description

	Frees the transparency table from memory.

See Also

	LoadTransparencyTable

�
LoadPCXTexture

Name

	LoadPCXTexture - Loads a PCX file from disk into the texture table

Specification

	C		- int LoadPCXTexture(int Index, char *Filename, int FOfs);

	TMT		- Function LoadPCXTexture(Index : Longint; Filename : String; FOfs : Longint) : Longint;

	

Parameters

	Index		- index into the texture table to store texture.

	Filename 	- Name of the file to load transparency table from

	FOfs		- file offset to start reading from.

Returns

	I_OK		- Operation was successful.

	I_MEMERR	- Not enough memory for texture

	I_FILEERR	- Could not open file

Description

	Loads a 256x256 PCX file into the texture table. All texture files must be 256x256.

See Also

	FreeTexture, MakePhongMap

�
FreeTexture

Name

	FreeTexture - Frees a texture from memory.

Specification

	C		- void FreeTexture(int Index);

	TMT		- Procedure FreeTransparencyTable(Index : Longint);

	

Parameters

	Index		- index into texture table for texture to free.

Description

	Frees a texture map from memory.

See Also

	LoadPCXTexture, MakePhongMap

�
MakePhongMap

Name

	MakePhongMap - Generates a circular highlight phong map

Specification

	C		- int MakePhongMap(int Index);

	TMT		- Function MakePhongMap(Index : Longint) : Longint;

	

Parameters

	Index		- index into the texture table to store phong map.

Returns

	I_OK		- Operation was successful.

	I_MEMERR	- Not enough memory for phong map

Description

	Generates a circular 256x256 phong highlight map for use with phong shading.

See Also

	FreeTexture, SetRenderMask, SetObjectPhongMap, SetPolygonPhongMap

�
LoadPalette

Name

	LoadPalette - Loads a palette file from disk

Specification

	C		- int LoadPalette (char *Filename, int FOfs);

	TMT		- Function LoadPalette (Filename : String; FOfs : Longint) : Longint;

	

Parameters

	Filename 	- Name of the file to load palette from

	FOfs		- file offset to start reading from.

Returns

	I_OK		- Operation was successful.

	I_FILEERR	- Could not open file

Description

	Loads a 256 color palette from disk. The palette gets stored in the GlobalPalette array.

See Also

	GetTexturePalette

�
GetTexturePalette

Name

	GetTexturePalette - Gets a palette from a texture

Specification

	C		- void GetTexturePalette(int Index);

	TMT		- Procedure GetTexturePalette(Index : Longint);

	

Parameters

	Index		- index into texture table for palette extraction.

Description

	Copies the palette from a loaded texture into the GlobalPalette array.

See Also

	LoadPCXTexture, LoadPalette

�PAGE �48�

�PAGE �48�

