Inertia Programming Guide

Programming the Inertia real time 3D rendering system v1.0

Document Version 1.0

September 22 1997

Copyright 1995-1997 Alex Chalfin. All Rights Reserved

 �
Disclaimer

In no event shall the author be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business data, or any other pecuniary loss) arising out of the use of or inability to use this product, even if the author has been advised of the possibility of such damages.

License Agreement

This software is protected by United States copyright laws and international treaty provisions. Therefore you must treat the software like any other copyrighted material (books, musical recordings, etc.).

You have a royalty-free right to reproduce and distribute executable files created using Inertia. You may not produce applications which require payment from end users before they can try the program. You are permitted to create shareware and freeware programs royalty free. Further levels (e.g. Commercial Software) require the product be registered.

With your publicly released programs, you must:

(a) only distribute the runtime modules and executable files in conjunction with and part of your software product (i.e., do not include OBJ or source files); (b) include a valid copyright notice on your software product; (c) agree to indemnify, hold harmless, and defend the authors of this software from and against any claims or lawsuits, including attorneys' fees, that arise or result from the use or distribution of your software product.

The included source code may be edited anyway you wish, except that original copyright notices must remain unaltered. You may not distribute any of the included source code or OBJ files. You are prohibited from reverse engineering, decompiling, or disassembling any part of this software.

This product is provided as is and the authors disclaim all other warranties, either expressed or implied, including but not limited to implied warranties of merchantability and fitness for a particular purpose.

This agreement is governed by the laws of the state of Ohio.

�
Inertia Contacts

The following people helped with Inertia and are available for support and questioning:

Alex Chalfin email: achalfin@one.net

Main contributor to Inertia. Designed the graphics pipelines and API framework.

Created code standards for contributions as well as writing all existing code.

Bas van Gaalen email: bas@il.fontys.nl

Spearhead of the GFXFX3 project of which spawned Inertia.

Jeroen Bouwens email: j.bouwens@tn.fontys.nl

Some initial Inertia design. Wrote polygon fillers for Inertia/16.

�
Hardware Requirements

Inertia requires a 386SX or better CPU. Inertia runs exclusively in 386 protected mode making older compatibility non-existant. Inertia also makes extensive use of the 387 FPU instruction set. For reasonable performance an Intel Pentium+ CPU is recommended for Inertia.

 A standard VGA card is also required.

Performance Expectations

	The performance you get from Inertia is very system dependent. Inertia for Watcom performs noticeably faster than the TMT version (due to better compiler optimizations) on the same CPU. If you have the horsepower of a modern CPU (Intel Pentium, Pentium Pro, Pentium 2), Inertia is an outstanding performer.

�
Brief Tutorial

Inertia is a fairly complex system which makes the learning curve non-trivial. This brief tutorial is provided to help shorten this learning curve and help you on your way to creating your own 3d visualizations. All code snippets are provided in Pascal since its generally easier for a C programmer to understand Pascal than a Pascal programmer to understand C. If you need help, feel free to contact the authors.

Inertia requires six very basic things before it can run correctly. These six things are Inertia initialization, a Palette, an intensity table, a 3d object, a view, and a light source. I will discuss them in order.

	The first thing you should always do is initialize Inertia. This is a simple and painless process of calling InitInertia(). No parameters are required and nothing is returned.

A Palette is the traditional 256 color palette (256 entries of an r, g, and b) associated with most 8-bit color modes. Inertia provides two methods of getting a palette into the engine. The first way is to use the LoadPalette() function. This is a very simple and straight forward method that loads a raw 768 byte file containing the palette data. Here is an example:

 If (LoadPalette('MyPalette.Pal', 0) <> I_OK) Then Halt(0);

The first parameter to the function is the name of the file to load the palette. The second parameter is the offset into the file to start reading. The second parameter is almost always zero, unless you are doing some sort of large WAD type file arrangement. The LoadPalette function returns the I_OK constant if the palette was successfully loaded. The palette from the file is stored in the global Inertia variable called GlobalPalette.

The other way to load a palette is to grab one from a texture that has been loaded into the texture database. Once the texture is loaded, a call to GetTexturePalette will copy the texture’s palette into the GlobalPalette. Here is an example:

 GetTexturePalette(0);

The parameter to this function is an index into the texture data base to copy the palette function. A complete code sequence using this method is as follows:

If (LoadPCXTexture(3, ‘MyTexture.Pcx’, 0) <> I_OK) Then Halt(0);

GetTexturePalette(3);

What this piece of code does it loads the texture into the 3rd data base location, then copies the palette of the 3rd texture into the GlobalPalette variable.

Once you have your palette loaded, the next thing you need is an intensity table. The intensity table is necessary to provide the most flexibility in defining colors for objects and is used in shaded texture mapping. Intensity tables are generated with the Stab program. To load an intensity table from disk, call to the LoadIntensityTable() function. Here is an example:

 If (LoadIntensityTable('MyTable.IT', 0) <> I_OK) Then Halt(0);

This code snippet allocates memory for the intensity table and loads the intensity table into the allocated block. The first parameter is the filename to load from and the second parameter is the offset to read from. The constant I_OK is returned if the intensity table is loaded successfully.

Now that the palette and intensity table are loaded and ready to go, it is time to load a 3d object file. To load 3d objects from disk, just use the LoadGVO() function. Here is an example:

 If (LoadGVO(Obj, 'TORUS.GVO', 0) <> I_OK) Then Halt(0)

The first parameter is the variable of type VectorObject and is where the geometry data gets stored. The second parameter is the filename of the data file to load from. The third parameter is the offset into the data file to start reading.

GVO files can be created with the GVO program (.3DS and .ASC file conversion).

Next on the list is a View. Views are extremely simple to set up. Just call the InitView() function with the view you want to initialize. Simple enough.

The final thing necessary for basic setup is adding a light source. Adding a light source isn’t totally necessary because not all rendering modes need a light source, but the most common rendering types do, so I felt it should be included. A light source is added with the PushLightSource() function. You pass in a 3d vector defining the direction of the light source. This vector is automatically normalized by the function, so as far as this function is concerned (0,0,-10) is the same as (0,0,-1).

 PushLightSource(0, 0, -10);

Now that the essentials are out of the way, lets cover a few more fairly core routines. In order to get an object spinning on the screen.

Lets start by placing the object out in front of the view. That is accomplished with SetAbsoluteLocation(). To do this, we put it at some position down the positive Z axis. Here is a piece of code:

SetAbsoluteLocation(Obj, 0, 0, Obj.Radius * 3);

This will place the object at the positive Z location of Obj.Radius * 3 (the radius is calculated when the object is loaded).

The next thing is preparing the object to be rendered. This is done by the AddToRenderList() function. When this function is called, all of the transforms and lighting are performed on the object as well as storing the visible polygons onto a global render list.

Once all of the objects are put on the render list, a call to Render() will draw them to the specified video page.

That is basically it in terms of the essential functions. Realizing this explanation is not enough for some people, several example programs have been provided utilizing nearly every aspect of the Inertia system. Listed below is the first of 5 example programs for you to learn from.

Program Example01;

{ Example program demonstrating the basic loading of a 3d object and }

{ spinning it on the screen. }

Uses

 	Types, { Inertia type declarations }

Inertia, { the 3d engine }

Mode13h, { Basic Mode 13h graphics unit }

Crt;

Var

View : ViewObject; { The View System }

Obj : VectorObject; { A vector object }

Begin

	InitInertia;

If (LoadPalette('COPPRENV.PAL', 0) <> I_OK) { load the palette }

Then Begin

Writeln('Error loading Palette.');

 		Halt(0);

 		End;

If (LoadIntensityTable('COPPRENV.IT', 0) <> I_OK) { load intensity table }

Then Begin

Writeln('Error loading Intensity table.');

Halt(0);

 	End;

If (LoadGVO(Obj, 'TORUS.GVO', 0) <> I_OK) { load the vector object }

Then Begin

Writeln('Error loading TORUS object.');

 		Halt(0);

 		End;

If (InitView(View, Obj.Num_Polygons Div 2) <> I_OK) { init the view }

Then Begin

Writeln('Error Initializing view.');

Halt(0);

End;

SetMode($13); { Set graphics mode }

SetPalette(GlobalPalette); { Set the palette }

SetAbsoluteLocation(Obj, 0, 0, Obj.Radius * 5); { Set the object's location

PushLightSource(0, 0, -1); { Add a light source }

SetRenderMask(Obj, SMOOTH or LAMBERT); { set the rendering style }

SetBaseColor(Obj, 36); { set the object's color }

Repeat

SetDeltaRotation(Obj, 1, 2, 3); { rotate the object }

 	AddtoRenderList(View, Obj); { add it to the view }

 	Render(View, VirtualPage); { render to the virtual page }

 	Flip; { Copy the page over }

Until KeyPressed;

FreeView(View); { Free the view's allocated memory }

FreeVectorObject(Obj); { free the vector object's allocated memory }

FreeIntensityTable; { free the intensity table from memory }

	

SetMode($03); { return to text mode }

ShutdownInertia;

End.

One piece of code not provided by Inertia is a Mode 13h graphics unit. This is because the system was designed to let you use your own code. A *very* basic Mode13h unit has been provided for those of you not familiar with Mode13h.

Also, please see the function reference for more details of the functions listed here.

The other example programs provided are EX02.PAS, EX03.PAS, EX04.PAS, and EX05.PAS.

 	Here is a step by step breakdown of initialization.

1. InitInertia

2. Load Palette (from a palette file or from a texture)

3. Load Textures (if textures are used)

4. Load Intensity Table

5. Load Transparency Table (if transparency is used)

6. Load Objects

7. Initialize View

8. Add light sources (if shading is used)

9. Enter Graphics Mode

10. Set the Palette

 When exiting, be sure to free all allocated memory with the

 following functions:

1. FreeView

2. FreeVectorObject

3. FreeIntensityTable

4. FreeTransparencyTable

5. FreeTexture

6. ShutdownInertia

 �

Final Notes

	Inertia/16 is no longer supported. 16-bit code has gone the way of the dinosaur. The name “Inertia” can now be viewed synonymous as Inertia/32.

