Inertia/Glide Programming Guide

Programming the Glide extensions for Inertia real time 3D rendering system v1.0

Document Version 1.0

December 1 1997

Copyright 1995-1997 Alex Chalfin. All Rights Reserved

 �
Disclaimer

In no event shall the author be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business data, or any other pecuniary loss) arising out of the use of or inability to use this product, even if the author has been advised of the possibility of such damages.

Glide is a registered trademark of 3dfx Interactive.

This document is limited to discussion of the Glide extensions to the Inertia 3d real-time rendering system. Please see the Inertia Programming Guide for general information concerning the use of Inertia.

�
Inertia Contacts

The following people helped with Inertia and are available for support and questioning:

Alex Chalfin email: achalfin@one.net

Main contributor to Inertia. Designed the graphics pipelines and API framework.

Created code standards for contributions as well as writing all existing code.

Inertia Glide extensions

Bas van Gaalen email: bas@il.fontys.nl

Spearhead of the GFXFX3 project of which spawned Inertia.

Jeroen Bouwens email: j.bouwens@tn.fontys.nl

Some initial Inertia design. Wrote polygon fillers for Inertia/16.

�
Hardware Requirements

Inertia/Glide requires a 3dfx based graphics board compatible with 3dfx Glide rendering API. Inertia/Glide has been fully tested on a Diamond Monster 3D graphics board.

Software Requirements

	Inertia/Glide requires Watcom C/C++ version 10.x (v11 should work). The Glide DOS libraries and header files are also required.

Performance Expectations

	The performance of Inertia/Glide is phenomenal. The high performance of Inertia for Watcom C is mixed with the incredible rasterization performance of the 3dfx chip. Don’t expect full SGI RealityEngine performance, but as is, you are looking at an order of magnitude performance increase over the Inertia software rasterizers.

�
What to do now

If you already know how to use the software only version of Inertia/32, then enabling the Glide extensions will be trivial for you. However, if you don’t know how to use Inertia software rendering, I suggest you learn that first as it is a little easier on your nerves when you run into problems (especially if you have a pass-through 3dfx based board like the Monster 3d).

	As you know, the first step with using Inertia is initialization. Normally you would call the InitInertia() function. However, if you wish to enable the Glide functionality, you must call G_InitInertia() instead. The premise of G_InitInertia() has changed a little as well because it can return an error state (it is a non void returning function). See the small API reference for a list of differences.

	When it comes to shutting down Inertia, you would normally call ShutdownInertia(). Now G_Shutdown() must be called instead. This is *very* important, especially for pass-through cards as it restores the original screen.

	With Inertia/Glide, a few new responsibilities have been taken on by Inertia. Primarily is frame buffer control. Before your application can start drawing, you need to open the drawing window. This is performed with a call to G_OpenWindow(). G_OpenWindow() must be called after G_InitInertia() and before any rendering takes place. This function is analogous to initializing a graphics mode such as Mode 13h.

	A palette is also necessary. The pallette is taken from the global GlobalPalette variable which is loaded by normal means (LoadPalette() or GetTexturePalette()). Once the desired palette is loaded, calling G_SetPalette() will actually set the palette with the texture unit of the 3dfx chip.

	To handle the double buffering mechanism, the function G_Flip() will show the virtual page and prepare the now hidden page for another frame. This function should be called after the call to Render() (where the normal page flip would occur).

	One last additional function supplied by the Glide extensions to Inertia is G_Phong(). Since shade tables and transparency tables are not necessary with the 3dfx chip, an illumination model must be in place. G_Phong() initializes the ambient, diffuse, specular, and gloss parameters used for illumination. This function is fairly slow and shouldn’t really be used for dynamic lighting parameters on a per-frame basis. The default values should be more than enough to satisfy most (ambient=0.1, diffuse = 0.7, specular = 0.2, gloss = 75) thus not requiring a call to this function.

	With all of the API changes in place, there are a few things that must be done with the standard API in order to make things look right. First off, the screen resolution is 640x480. This means you need to set the viewport of your camera to 640x480. This can be done as follows:

SetViewPort(&View, 0, 0, 639, 479, 1);

	Also, the function Render() has 3 parameters (screen pointer, x resolution and y resolution). When executing with Glide rasterization, these parameters are ignored. Passing in any arbitrary values is acceptable. This is what is used in the example programs:

Render(NULL, 0, 0);

	One feature of the software version of Inertia that is not implemented with Inertia/Glide is phong shading. Whenever phong shading is selected via SetRenderMask()

Inertia reverts back to gouraud shading automatically. This seems like the best way to handle things without breaking API compatibility.

 	Finally, the global variable GlideFlag can be used to tell if your program is using Glide rasterization.

if (GlideFlag)

 printf(“Using Glide!!!\n”);

That is basically it in terms of the changes. Listed below is the first example program re-worked for use with Glide rasterization.

/* Example 1 reworked for Inertia/Glide */

/* Alex Chalfin 12/1/97 */

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include "types.h"

#include "inertia.h"

#include <glide.h>

ViewObject View; /* The View System */

VectorObject Obj; /* A vector object */

main()

{

 if (G_InitInertia() != I_OK) /* initialize Inertia/Glide */

 {

 G_Shutdown();

 exit(0);

 }

 if (LoadPalette("COPPRENV.PAL", 0) != I_OK) /* load the palette */

 {

 printf("Error loading Palette.\n");

 exit(0);

 }

 if (LoadGVO(&Obj, "TORUS.GVO", 0) != I_OK) /* load the vector object */

 {

 printf("Error loading TORUS object.\n");

 exit(0);

 }

 InitView(&View); /* init the view */

 if (G_OpenWindow() != I_OK) /* open 3dfx graphics mode */

 {

 G_Shutdown();

 exit(0);

 }

 SetViewPort(&View, 0, 0, 639, 479, 1); /* set proper viewport size */

 G_SetPalette(); /* set the palette */

 SetAbsoluteLocation(&Obj, 0, 0, Obj.Radius * 2.5); /* Set the object's location */

 PushLightSource(0, 0, -1); /* Add a light source */

 SetRenderMask(&Obj, SMOOTH | LAMBERT); /* set smooth surface */

 SetBaseColor(&Obj, 36); /* set the object's color */

 do

 {

 SetDeltaRotation(&Obj, 0.01, 0.02, 0.03); /* rotate the object */

 AddToRenderList(&View, &Obj); /* add it to the view */

 Render(NULL, 320, 200); /* render to the virtual page */

 G_Flip();

 }

 while (!kbhit());

 FreeView(&View); /* Free the view's allocated memory */

 FreeVectorObject(&Obj); /* free the vector object's allocated memory */

 G_Shutdown();

}

Inertia/Glide Additional Function Reference

�
G_InitInertia

Name

	G_InitInertia - Initializes the Inertia rendering system as well as Glide.

Specification

	C		- int G_InitInertia(void);

Returns

	I_OK 		- Inertia was initialized successfully

	I_MEMERR 	- An error occurred during Glide initialization

Description

	This function initializes internal function pointers to the polygon fillers, initializes the render list, the light source stack, the Glide rasterization library and otherwise puts Inertia into a known state. This must be the first function called by your program before any Inertia functionality can be used.

Notes

	G_InitInertia differs from the regular initialization function. G_InitInertia should only be called when using Glide rastrization. Calling the standard InitInertia before or after G_InitInertia is a very bad thing. Don’t do it.

See Also

	G_Shutdown

�
G_Shutdown

Name

	G_Shutdown - de-allocates all memory buffers used within Inertia and shuts down Glide

Specification

	C		- void G_Shutdown(void);

Description

	G_Shutdown deallocates any internal buffers as well as shuts down the Glide system. This includes restoring the video on any pass-through 3dfx cards.

Notes

	It is very important this function gets called on all pass-through 3dfx cards (Diamond Monster3d comes to mind) as it restores the old video.

See Also

	G_InitInertia

�
G_OpenWindow

Name

	G_OpenWindow - Opens the graphics mode for the 3dfx chip

Specification

	C		- int G_OpenWindow(void);

Returns

	I_OK 		- Window was opened successfully.

	I_MEMERR 	- An error occurred in Glide graphics mode initialization

Description

	This function opens the graphics window.

Notes

	G_OpenWindow must be called after G_InitInertia but before any rendering is performed in order for things to work properly.

See Also

	G_Shutdown

�
G_SetPalette

Name

	G_SetPalette - sets a palette inside the 3dfx’s texture unit.

Specification

	C		- void G_SetPalette(void);

Description

	G_SetPalette retrieves the data from the GlobalPalette variable and sets the 3dfx’s texture palette registers.

�
G_Flip

Name

	G_Flip - performs a page flip.

Specification

	C		- void G_Flip(void);

Description

	G_Flip performs a double buffer page flip. Prepares for the next frame of rendering (including clearing of the zbuffer).

�
G_Phong

Name

	G_Phong - sets up the internal phong illumination parameters

Specification

	C		- void G_Phong(float ambient, float diffuse, float specular, float gloss);

Parameters

 	ambient 	- percent ambient component

	diffuse		- percent diffuse component

	specular	- percent specular component

	gloss		- glossiness value

Description

	Sets up the internal lighting tables necessary for correct lighting on the 3dfx board. This function is used instead of external shade tables.

Notes

	(ambient + diffuse + specular) should total up to one. If they do not, they are forced to do so. Gloss should be in the range of 0..255.

