TMT Pascal

Multi-target Edition
Version 3.50 (Build 2.50)

Programmer’s Reference

2000

Programmer’s Reference

Contents
|1 The TMT Pascal Language DESCIIPTIONcveveeeeveeeeeeieeeeeeeeseeeeeesteeeseseeneneseeseneseeseneseesenes 8|
I T L= 8|
SN T~ 8
COMPI AL ON TANGELS. ...ttt e eetee et e eeteeeabeeeteesareeeseesnreesseesnreesnreesnres 8
I L S Lo AT 8
[L.2 TMPIEMENLALION ISSUEBS..........covieiiictiici 9|
M EMOTY OFQANIZALION.cc.veeeeeieieieeeseeesteeeeeeeeeseesseesseesseeseeseesseesseesseesseessesssesneesseeseesseessenns 9
CaAlliNG CONVENTIONScveiveeieeeitieetieeteeeeeeteeeteeeteeteereeseesseesseesseeaseenseeneeeseenseensesssesseesseessees 10
I T TP p PP PPPTPPRPN 11
[1.3 PasCal LanQUaGgE SITUCKUIE................ccveuvureueeeieeeerereeseeenseetrssesteessesssesseseesssesssesssesesssesssesens 11|
TOKENS ANA TABNTITIENS ... eveeeeeeeeeecie et eeeeeeee e e e ere e eeeeeseestesresresseeneeseeneenseseens 11
R o Y LT 12
Operators and DEliMIters. ... 12
bperator PEOCEIENCE. ...ttt ettt e e e aeeneen 13
ONSEANES . 13
OQFAM COMMIBIIES......eeeeeteete ettt ettt ettt eeeeseaeteesbeebe e beearesneesneesneeaneesseenseenes 14
[LA TYPES ..ottt 14
BOOIEAN TYPES.......ecueeeieriiiieitieteiteeseeeeeestessestessessesseeseeseessansessessessessesseeseensessensessessessensenseens 15
N ACTEN TYPES. ...veeteeteeeteette ettt eete et et eete et e ebeenbeeseesseesseesseenseensseneseseenseentennrennsesseesses 15
L0 N Y 0= PP PPTP 16
ENUMENation TYPES. oo 1§|
S e R 17
08l TYPES. 17
T = 17|
PO N DB OIENCE ... ettt e e te st e et e e eteeeteeeeeseeereeaseenreenreeneesseessens 18
Array 'Lyp&c ... 18
FING TYPES. ... eeuteeteeeteeeee ettt eete ettt et eete e teenteentesseesaeesneeaseeseenseaneaaseeseenseensesseesneesseesseeneennes 18
SR 19
RECOINT TYPES. ...ttt eee e e e steeteeneeseeneeneeseesseseeeneeseeneeneensenseseessesseeneeneeneenseseens 19
LI 20
PrOCEOUINE TYPES....ecuviieeectiectiecteeeteetecee et e eteeeteeveeareeteeeteeeteeteesesnsesneesseesseenseenseeneeereesseesrens 21
OD] ECE TYPES. ...ttt et e e e seestesseeseeseeseessessesesresreasesseeseensesessens 22
TYPE COMPATDITTY 1.t e e e e e eneeeeeeseesrenresresresreeneeneens 22
I e 22|
e T e T 23
'I:abel DeclarationsS. ..o 23
S DL T e 23
V ariabl € DECIAIAtiONSeeivieiiciieieeeee ettt s e e st e e st e eeeeneeeneesseenseesseeseesreessens 24
|ocal BIOCK DeCIArations ..o 25|
[L6 EXPIESSIONS.......ccviiiiiciicti it 20|
ATTENMELIC OPEIGLOISveeveeeeeeeeeeieseesteseeeresseeseeeessesseseessessesseeseeseessessessessessessessensenseeseeneens 26
BOOIEAN OPEIBEOIS.........ecvveteeteeteeteieeiteeeteeeteereeseeeteeeteesseeesessessesseesseesseenseesesseeeseesseesrens 27
SO o1 = (0] PSPPI 21
€l At ONAI OPEILONS......c.veeeveeteeetieeteeeteeteeeeeteeeteeeteeteeseeeseesteeteetesseesseesseesseenseeeeeseenseensenns 27
L= e 28

TMT PASCAL

Developer Guide

[OPErAtOr PrECEUENCEc.cvvvveeieteeieeieteeteteeeet ettt et ensaetesetereensseseseteresnsnesenene 28|
[L7 SEBEEIMENES. ...ttt 28|
A SS OIMIENES. ..ttt ettt ettt e e et et et e b e eb e e e eneeaeeabeebeebeere et enteneeareeresreas 28
COMPOUNT SEBEEIMENESeeiiieiiii ittt e e ettt eeeete e e e steresessbeeesesseessseeessanbenasanses 29
TS I = (= L= L — 29
LTRSS T U L= AL 30
IO O RS T a0 L PP — 30
LIRS 0= =L P — 31
NS = 0= A L 31
RS2 S = 1= = | PP 31
RS 100 o T ———— 32
WS E 0 1 T 32
Y A I EY L= 0210 I —— 32
RO T N o o T 33
[L.8 Programs @N0 UNIES.ecvevvuieueeiieiieeeisiiseesesteseeeeseseesessessenessessessesessessesessesseseesessensesessens 33|
LT 33
LS T T 34
[1.9 Dynamic-Link Libraries (DLL’S)
N T A T I
ST Te T T
Writing DLLS
S E IR A S e o T —— 38
MPOTT UNIES...eietiecteeee ettt et e e te et e eseeeteesteenteenseeneesneesseesseenseenseeneenseesneens 38
[L.10 Procedures @and FUNCLIONSc..eueeiiueuinirieteeesietenesieteeesieiesesietesesieneseseeseseseeseseseesessssenens 38|
Procedures and FUNCLIONS DECIAratiON............ccueviieuvieiceiiiiieeiie ettt e s e e et e e snes 38
Forward _Declaration .. 39
EXTENA DECTAIAION -.oovvoovoos oo oososssoessooesoeesoeeossesoeeeseesseeseeosessessesseeseeoeeseesresoeerre 39
NEEITUPE PrOCEAUIEveeeceeeeciesiestesteste et eeeneeseeseestessessesseeseeeesessessessesseesesseensensensessessens 40
R N I TV — 41
USiNg SAEEMENE 8S PrOCEAUIE.ccvevieeieeei e eeeeseteseeeeesteeeeeesaveesneeesneeeenesesnes 42
[L.11 OOP EXEENSIONS.coovveeiereteeeeretetiereteeeereteteeretessesesessesesesseseseseesesessasssessesesessessseseeseseneas 44|
O T T 44
[S L Ao - TR T TP ——— 44
Dbject Syntax............... SO OO OO OO PO PO OO PO OO PO OO PO FOP PO POV PO PO PO PO PO PO PRPTROTI 441
Restrictions On ODJECE DESCITPHION ..ottt 45
[DOP SCOPES ...ttt e e ettt e e e bt e e eeenteeeaanteeaaanteeeeanneeaesnreeaeaanreeeaannnes 45
PUDIiC aNd Private deClarationS.eeiiiiiiiieiiiiiiiie st ceiee e s seeeeeessreessesenessssbeeesesesessssnes 46
YA Y = oo e —— 41
CONSITUCTONS oo 47
Fail Erocedure .. 48
Using New Procedure (OOP)...........ccciiiiiiiiceieeeesecsesesteeteeeenaeneeseeseseessesseeseesaensenseseens 48
IS e Vo[TR 48
NNENTTEA rESEIVE WOIT ...ttt et stee et s s ssesesbessssessssessssessssessssesssesensessnne 49
Eelf BEGUIMENE ...ttt et e et et eeteeteeateenteeseeeseesseesseesseeseenseeneeaneenseenseesennseneessenss 49
[L.12 OPEN ATTEYS.....ceeteeiieetieieeeteneseeteeseeteseseeseeseeeeeseesetssesensasesentssesanssseseasssesensssesessssesensesenens 49|
[L.13 USEr DEMINEA OPEIGEOIScvevieeveveeieietieieveteietetieeeteteeeeteseenstesessesesesnssesessesesessesesessesenens 49|
T e i 50|
ASITY SEAEEIMIENT ...ttt e et ee e et e e eeateeeeenneeeesnbeeeeessseseanneeeessnseresanseneesnnees 50
NS L L B e Tor = UL = YT 51

3

4

Programmer’s Reference

COMMANG SYNEBX ...ttt ettt e e et e eteeeteesteeeteeeseeseeneeeneeeseenseensesnseeseesseessees 52
ASSEMDIEF LADEIS ..ottt er e een 52

A SSEMDI EF PrEFIXES.. .ottt b e seesbesbesseene e e eeeneens 52
ASSEMDI € OPCOUES.........veveceeeeeeeeeeieseestestestesteeseeseeseesteseessestesresseseeseessensessessessesseesenneenseneens 53

A SSEMDI O REGISIEN'S ...ttt eeee e e eeeeteseeeneeneeeeneeseenseaneesenseeneeneeneensessens 53

A ssembler OPCOdE MNEMONICS..........cceiueerereeeeriereesteseesreseeseessessessessessesseeseessessessessessessens 54

A ssembler OpPerand EXPIrESSIONS........cveveieeeeieeeeeeeeeeeieseeseseeeteseeseeseeseeseeseessesseeseeseeseeseens 59

A SSEMDIEF OPEIANGS.eccuviiieeiieteieieeeeeteiesteeeeeresseeeeersssereesersssesseessssesessesssesesserssesearesesne 59

A SSEMD] € OPEIAEOIS ...ve.vveveeeeeeeeeeeeeeeeeeeeteeeeeneeneeseeteseestesseeseeseeneeneessessesnessesseeseeseeseensesnens 60

A ssembler Operator PrECEAENCE.coueruereeiiieriieie ettt sbe e neeeeseens 61
Differences between 16- and 32-Dit COOB..........oceiveieeiiiiiiieeee e 61
[L15 SEBNOEIT UNITS ... 63|
P WIN32 ProgramMiNg..........c.ceeevereeueeereeeeeeteereeeeteeteeseteeteeseseesessesesseseseesessesessesseseesenseseesens 64|
R.1 Writting Win32 GUI APPHICAHIONSc.evevereereeerieeereteeeeeteeeereteeeeeteeeereteeneneressereseenenene 64
.2 Structure of WINAOW PrOCEAUNE ..ottt 64
P.3 Designing 8 WINAOW PrOCEAUIE..........cuevrerieeeerieeseeeiesieeesesee st renenesnenenesrenennas 65|
R.4 Associating a Window Procedure with aWindow Class..............cvoveevnvevnesernerenneneas 65|
R.5 Example of WIin32 GUI APPIICAEIONcvevereeeeieteieeeteteeieteeeieteeeieteeeeeressseresnsnerenenas 66|
p.6 Writting Win32 Control Panel APPITCALIONS............cccovvveiiiiieiiiiieiieictcieeet e 6/
P.7 Application Responsibilities and OPEratioNccucveiieeiiiiiciciirieceee s 63|
R.8 Application Entry-Point FUNCHON.ccccviueieiieieeseeeeteseeeseseeenseseesestesearesseseesessesens 68|
CPL DBLCLK ...ttt ettt sbess e eneseeneesesseneenes 68
S S L 68
CPL GETCOUNT ...ttt ettt ee s s esesesseneesessensesessessesessessenes 68
OPL TN TT ettt et es et et esees e st esesbessenesee st eseebesteneens 68
CPL INQUIRE ...ttt ettt es e e eneseeneeseseeneenes 69
CPL NEWINQUIRE ..ottt eseese s eneesesseseesesseeens 69
SIS = o L 69

O IS] 69
BAppendix A - COMPIEr DirBCHIVES.ccoieeieeeeeeeeieieteteteteteteteieeee e et bebeberesesesesesssnsssnans 70|
A1 Conditional dITECHIVES.ccouiiiiiiiietetetetetetcieeieie ettt eesteteteseresesesessssssssssssseseseseseassessasanans 70|
[A.2 Switch and Parameter DIr€CHVES.c.oviuiuiiirerisceeiceessessesssssessssesssssssssnssaessssesessnsesesses 70|
N Y e TS YT e — 70
BPAC: AdaStyle Comments SWiteh.....coos 71
BAMD: AMD 3DNow! Assembler Instructions Switch....................oooooo 71
5B Boolean Evaluation SWITCh.........oeiiieriseeire e seenns 71
BCC: C/C++ Style CommEnts SWItChooiiiiiiiie 71
bD: Debug INfFOrmMation SWITCNcceeuieceieieececece ettt ee e ereeeneas 72|
BT 170-CRECKING SWITCN......ooooooooooooooooooeoooeeoooeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeeemeeeeeeeeeneeeeen 72
INCIUAE Fil@ DITECHIVE ...ttt eneeeeeeneens 72|

L: Link ObJeCt FIlE DIFECHIVEc.eeuiieiiiiieieieiecie ettt 72
BL: Local Symbol Information SWItCH............ccveveveveveeieeeeeteeeeeeeeeeeeeeeee et 73
BMAP: Map File Generation SWItChoooiiiiiiiiii 73

MM X: Intel MMX Assembler Instructions SWiteh ... 73]
BOA: Objects and Structures Align SWILCh..........ccccovvviviiicicece e 73
(BOPT: Full Optimization SWITCHvcuiiiecicciciecce ettt sttt e eeeresreneeresnas 74

TMT PASCAL

Developer Guide

PTFRM: Stack Frame Optimization SWItCHcccoiiiiieiiiiieeeeeeeee e 74
PTREG: Register OptimiZation SWITCH...........coeiiririieieiircse e 74

P: Open String Parameters SWItChcc.veveeeeeciecieceeeece ettt eeeas 74
BQ: Overflow Checking SWItCh.......co 74
BR: RANQE-CheCKING SWITCN.........ciiiiieceeceeceeeeeeeee ettt e eeereeereesreas 75
BRIRESOUICE FITE. ..o oo sooeeseeemeeseeeseereseeeeeeereeeeeeeeeneeeeeseeeeeeeereeeereneeees 75
. Stack-Overflow Checking SWItChcovcvviciciecee e 75

T Type-Checked POINIEIS SWITCHccvvviiieciceeesecs e st st eesee s e sreseeneeneens 76
5TPO: Typed INc/Dec Operations SWItCh..........cvovovevveeeeieeececeee e 76
BV : Var-String CheCKiNG SWItCNcocuuiiieiiieiieci e ee et ee e s e beseneeenee 76
BW: Warnings GENEration SWITCNvcvvueeeeeeeee e eeeeteeeeeeeeeeseseeseeeneeeeneeneeseessesnens 77|
BX: EXtended SYNMTaX SWITONo.o.oooooveoororeeooreesoressoeessmeessereeneeesnereeeereeeereseeeeeneeees 77
JA.3 Predefined SYMDOISccccvcuieiieeeeieietieeeteteeeeeteee ettt ettt eaeseeetetesnssesenetereensresenenes 77|
AppendiX B - RUN-TIME ETTOF COUBScooveeeeeeeeeeeeeeeeeereeeeeereeeeeverseeeesensesnesenseeeeseesesnsenens 78|
Bppendix C - PMODE/W DOS EXEENOENiviviiieiieiiieiiieieeseisiresese s ssssessssseseseensesssenseesnsns 80|
[C.1 ADOUE PMODE/W ...ttt esesteneseseesenestenesessenenessenesessesensesenens 80|
IC.2 Supported DPMI INT 310 fUNCHONS..........cvevevererieiereteeeeteeeeeeteeeeteteeeeteteeeteteeneieesenetennnas 83|
unction 0000 - AllOCAEE DESCIIPLOISccuveveeerieeeietreeteeeteeeteeeteeeteeeteeereeneeereeeseeereesseenrens 83
Eunction 00010 - FreE DESCIIPLONecuveveieieiiieeeeeeeesiesteeeeeeeeeeeessessesseeseeeensessessesseeeeneessens 83
unction 0002h - SegMENt t0 DESCIIPLONccuvevieeriereeerieereeeteeeteeeteeeteeereereereeseeereesseesres 84
Function 0003 - Get Selector InCrement ValUB...........oeevevveeeiieeeeeeeee e 84
Eunction 0006 - Get Segment Base AdAreSS...........ceueecueeeueecieeeiecieeeeecieeeeeeeeeeeeeeetveseeeseeas 84
unction 0007 - Set Segment Base AQAIESS ... 85|
FuNction 0008 - Set SEgMENE LiIMITc..eccvieiieeeiieiieeeieecteectee e eteeeeteeeeteeeereeeereeesneeenes 85
-unction 0009 - Set Descriptor ACCESS RIGNES........oovviiiiiiiieceeeen 86
Function O00A - Create AliaS DESCIIPLON..........c.eeiveereeereereereeteeeteeiteeereeereeereeeeeseeereesseensens 86
FFUNCEION 000B - GE DESCIIPIONoo.ooooooooooooooeoooeooooeosoeieoeseseseeesoeeesseeeeseeeeereeeenes 87|
Eunction 000C - Set Descriptor SO OO OO PO OO RO PO PO PO OO TRV PUTTROTRUTRRTROPPIOT 87
unction 0100 - Allocate DOS Memory BIOCKccccvvveeeevecieiiiisieieiecese v sieseeeeens 87|
Function 0101 - Free DOS MemMOrY BIOCKcovecuieerietieieetieeteeetieeteeeieeeveeeeeteeeteeeveenrea 88
Function 0102 - Resize DOS Memory BIOCKcvcviiiiiiiiiiecec e 88
unction 0200 - Get Real Mode INterrupt VECKONc.vecuvecvvecieecieeceeeeeeeeeeeeeeeeteee e 88
Eunction 0201 - Set Real Mode INterrupt VECKOrcoieuiieeiiiiiiiiiieeeeeeeeese e 89
Eunction 0202 - Get Processor Exception Handler VECtorc.ocvevveevecrvecivciececennen. 89
unction 0203 - Set Processor Exception Handler Vector...........cocoovvvveiccccncicceee, 89
Function 0204 - Get Protected Mode INtErTUPRt VECIONeeeuveeeeeeeiieeeieeecvieeeee e 90
-unction 0205 - Set Protected Mode Interrupt VECtOr.........c.vecvveiveiiiciiiiic 90
Function 0300 - Simulate Real Mode Interrupt OOV SO PO PP RPN 91
Function 0301 - Call Real Mode Procedure With Far Return Frame...........ccccccccceevcvennnnen. 92
Eunction 0302 - Call Real Mode Procedure With IRET Frame.........c.cccoovvvvveevccesreienene. 93
unction 0303 - Allocate Real Mode Callback Address............cccevvvvvveciveeeeresesesienen, 94
Function 0304 - Free Real Mode Callback AdAress........coovvvvveieicscscceceeeccesee 94
Function 0305 - Get State Save/Restore AdAreSSES........oovvvvvvieciece e 95
unction 0306 - Get Raw Mode Switch AdAreSSESccuvecvvecveecieeceeceececeeeeeeete e, 95
UNCEION 0400 = GEEL VEISION.....c.ueivieieiiecieeeteeeteesteeteeteeteeeesseesseesaeesseesseeseenseessesseessesssees 96
Eunction 0500 - Get Free Memory InfOrmation............c.eccveceeeueieeceeceeeeecieecteeteeveseeeseeas 97
unction 0501 - Allocate Memory BIOCK oo o7
Function 0502 - Free Memory BIOCK.........c...oiuvecuieiieeciee et eetee et eeteeeeteeeevveeeneeenns 98
FFunction 0503 - Resize Memory BIOCKooviveiiiiiiciiecce e 98
Function 0800 - Physical AAress Mappingc.eecvveiueeiueeireeereereereereerveereesreesreesreesreennes 99
Function 0801 - Free Physical Address Mappingc.cccceveeeeereeresieseseeseeneseseseeeeneens 99
unction 0900 - Get and Disable Virtual INterrupt Stateecvvvvveeveeeeeeseseeeeeeeeens 99
Eunction 0901 - Get and Enable Virtual Interrupt Stateccoccvvvvvevevesececeseeeeeene, 100

5

Programmer’s Reference

Function 0902 - Get Virtual INterrupt SLaEE..........ccuveeveeeueeieeieciecee e cteeeteeeteeveeeeeieeeeas 100
Function EEFF - Get DOS Extender INformationc.oiveiiiiiiieeiieieeeeceeceeseeseeeneeans 100
IPPENAIX D - IDE OVEINVIEBWceeeeeeceseeecseeeeseseseseseseescessesesssesssssssssesesesesesssssssssssssses 102]
L BOOKIMEIKS.veeeteeieeeieeeiesieseesiee st esteenaeeaesseesseesseesseesseenseesesnnesseesseenseesensensessesnees 102

D.2 Code Templates (Options | Environment | Code Templates)........cccevevervecereerennnene. 103
D.3 Compiler Options (Options | COMPIEN.....oisiiiiii 104
5.4 Directories (OptioNS | DIFECIOMNES)c..eveeerieieeereieeereeeeseeneeseesressesseeseeseessessessessessens 106
E.S Display (Options | Environment [Display) ..o 106
.6 Editor (Options | Environment | EAITOr)cc.cceeievivvieeieeereeevecsese et eeeeesieseeeas 108

B =T [TS o T TN 110

TMT PASCAL | 7

Developer Guide

About this guide

This document is a programmers’ s reference for the TMT Pascal language. 1t includes Win32

Programming, Compiler Directives, Run-time Error Codes and the PMODE/W DOS
Extender.

Copyright © 1995-2000 by TMT Development Corporation. All rights reserved.

Programmer’s Reference

Chapter 1

The TMT Pascal Language Description

1.1 Features

Overview

The TMT Pascal compiler isafast compiler for the Pascal language. The compiler emits 32-
bit code and supports many language extensions from Borland Pascal (BP), aswell as more
powerful extensions.

TMT Pascal brings new life to the 32-bit MS DOS applications and will help you to create
your own Win32 and OS/2 applications.

Compilation targets

TMT Pascal allows easy building of the following targets:

- MSDOS 32-hit protected mode
— 0S/2 presentation manager

— 0S/2 console

— OS/2 full screen

- 0S/2DLL’s

- Win32 GUI

- Win32 console

- Win32DLL's

Language extensions

The TMT Pascal compiler supports a new enhanced dialect of the PASCAL language. This
dialect fully covers the Borland Pascal language and has additional powerful extensions such

e C/C++ extensions support

e C++and ADA-style comments
e Local declarations

e Multidimensional open arrays
e Operator overloading

e Unnamed procedural blocks

* MMX™ technology support

TMT PASCAL

Developer Guide

1.2 Implementation | ssues

Memory Organization

The TMT Pascal compiler usesthe TMTSTUB (based on WDOSX) and PMWSTUB (based
on PMODE/W) extenders for a protected-mode program.

The segment registers are not used in protected mode. Instead all address space is separated
into 4Kb pages.

Y ou do not need to add a special _zero variable to get access to the physical addresses.

For example;

procedure clr_video(filler: char);
var
i: Integer;
begi n
for i :=0to 80 * 25 - 1 do
Meni $B8000 + i * 2] := filler;
end;

This procedure fills the video memory of the VGA adapter with the filler symbol.

Note that the linear address $B8000 is used as the physical address - not the segment address
$B800.

Some other special variables are described in the SY STEM unit. The _psp variable contains
the logical 32-bit address of the PSP of the program, and the _environ variable contains the
environment address.

Although you can access the interrupt vectors by using this method, we do not suggest doing
this.

Also keep in mind that MS-DOS interrupt handlers use memory addresses in the 1% Mb of
physical memory while your program and its data are |oaded beyond the 1% Mb. The
TMTSTUB intercepts and correctly handles some, but not al, callsto MS-DOS. Thus, if you
are using Intr or MsDos calls, or call MS-DOS from the assembler, you will need to modify
the code.

Absolute memory addressing Mem, MemW, MemL, and MemD pseudo-arrays may be used
in BP-compatible manner:

var x: type absolute seg:offs

Meni seg: of f s]
Here the effective address is computed as seg* 16+offs. The Ptr(seg, offs) function works
similarly. The Seg(v) function still always returns 0.

These new functions should substantially simplify the conversion of the programs that use
absolute addressing.

An exampl e of using these functions can be found in file
TMTPL\SAMPLES\MSDOS\FLAME\FLAME.PAS

See also: PM ODE/W API

9

10

Programmer’s Reference

Calling Conventions

Calling conventions match those in Borland Pascal with the following differences:

e dl parameters use 4 bytes on the stack, or a multiple of 4 (BP:2)

« dl procedures must preserve the contents of registers ebx, ecx, edx, ds, and es!

« thedirection bit should be cleared after the exit from a procedure, if it has been modified
by the procedure.

To call external procedures written for different languages, TMT Pascal provides the conv
operator. The conv operator should be used in the function (procedure) declaration to define a
calling convention, which in turn will be used to call a declared function (procedure).

Syntax:

[function] conv conv_net hod FunctionNane [Argunents]
Ret ur nType;

Where conv_method is a constant, which defines the calling conversion to be used. The
System units contains the following constants to define conventional method:

const
/1 Base calling conventions to construct any possible
convention

arg_reverse [0];

arg_proc_16 [2];

ar g_nor egsave [3];

arg _no_drop_1 [4];

arg_no_drop_2 [5];

arg_no_drop_3 arg_no_drop_1 + arg_no_drop_2;

arg_no_drop_4 [6];

arg no_drop_1 + arg_no_drop_4;

arg _no_drop_5
arg _no_drop_6 arg _no_drop_2 + arg_no_drop_4;

arg_no_drop_all= [4..6];
arg_| O test [8];
arg_save_edi [9];
arg_save_esi [10];

/'l Conposite calling conventions

arg_pascal = arg_nor egsave,;

arg_stdcall = arg_reverse + arg_noregsave + arg_save_edi +
arg_save_esi

arg_cdecl = arg _reverse + arg_no_drop_all

arg_os2 = arg_cdecl + arg_noregsave;

arg_os2_16 = arg _proc_16 + arg_no_drop_all +

arg_noregsave;

The arg_pascal convention passes parameters from left to right; that is, the leftmost parameter
isevaluated and passed first and the rightmost parameter is evaluated and passed last. The
arg_cdecl, arg_stdcall, arg_os2 and arg_0s2_16 conventions pass parameters from right to
left. For all conventions except arg_cdecl, the procedure or function removes parameters from
the stack upon returning. With the arg_cdecl convention, the caller must remove parameters
from the stack when the call returns. The register convention uses up to three CPU registers to
pass parameters, whereas the other conventions always pass all parameters on the stack. The
calling conventions are summarized in the following table.

Directive Order Cleanup Registers
arg_pascal Left-to-right Function No
arg_cdecl Right-to-left Caller No

arg_stdcall Right-to-left Function No

TMT PASCAL

Developer Guide

Thearg_pascal and arg_cdecl conventions are mostly useful for calling routines in dynamic-
link libraries written in C, C++, or other languages. The arg_stdcall convention is used for
calling Windows API routines.

Limitations

1) Not implemented are Mark and Release.

2) The Inline operator isimplemented in a partial form:
Inline(byte/byte/...);

References to variables/constants are not allowed.

3) Import of object modules does not support all 32-bit object formats. We recommend using
TASM which isfully supported, except the usage of SEG addresses.

4) Complex typeis not implemented.
5) Constants of Extended type are not supported.

6) The reserved word Packed has no effect (it isignored) in TMT Pascal. Use $OA: Objects
and Structures Align Switch to switch on or switch off objects and structures alignment.

1.3 Pascal Language Structure

TMT Pascal programs are to be written either with the TMT Pascal | DE editor or an editor of
your choice. The source files created by your editor must be standard ASCI|I text. All
characters within the range of 32 to 127 (decimal) are valid. Control characters (characters
below 32 decimal) are treated as spaces.

Tokens and Identifiers

Contiguous charactersin a source file, not including the space character (32), are called
tokens. Tokens are separated by any number of spaces and control characters (in the range of
0 to 32 decimal). For instance in the following segment,

Writeln(*Hello, World!");

there are five tokens: the identifier Writeln, left and right parentheses, the semicolon and the
string ‘Hello, World!’. Programs are sequences of tokens that tell the compiler what code to
generate. There are several different types of tokens; for instance, identifiers, reserved words,
operators, and so on. Each type of token is explained below in this manual.

Identifiers are tokens that have a special meaning in TMT Pascal. Identifiers begin with a
letter (A-Z or a-z) or underscore, and may contain letters, underscores, and digits (0-9). The
maximum length of an identifier is 255 characters, however only the first 63 characters are
significant. TMT Pascal is not case sensitive, therefore the identifiers WriteLn, writeln, and
WRITELN are all identical. Reserved words, procedure names, and variables, are exampl es of
identifiers.

11

12

Programmer’s Reference

Reserved Words

Reserved words are identifiers with a specific meaning in TMT Pascal. Their meaning cannot
be changed or altered in any way. The following isalist of TMT Pascal reserved words:

and goto program
array i f record
asm i mpl enent ati on r epeat
begi n in set
case i nherited shl
const inline shr
const ruct or interface string
decl are | abel t hen
destructor library to

div nmod type
do nil uni t
downt o not unt i

el se obj ect uses
end of var
exports or Vi rtua
file over | oad whi | e
for packed with
function procedure xor

The following table shows TMT Pascal’s standard directives. Directives are used only in
contexts where user-defined identifiers can't occur. Unlike reserved words, you can redefine
standard directives, but we advise you not to.

Absol ut e Decl are os2cal |
Assenbl er Export nane
Cdecl ext er nal vi rt ual
Code Forwar d stdcal |
Conv | ndex

Operators and Delimiters

Operators and delimiters are tokens that also have special Pascal meanings. The following isa
list of valid operators and delimiters along with their meanings:

token Usage

@ Address operator

A Pointer dereference operator

+ Addition or set union operator

- Subtraction or set difference operator

* Multiplication or set intersection operator
/ Real division

div Integer Division

nod Modulus

@) Parentheses

Subscript delimiter, set constants
Assignment operator

Field selection operator
Separator

Range separator

TMT PASCAL

Developer Guide

Type separator or case separator
Equal operator

< Less than operator

> Greater than operator

<= Less than or equal operator

>= Greater than or equal operator

<> Not equal operator

and Logical AND

in Set operator

not Logical NOT

or Logical OR

shl Bit shift left replacing right side with 0’s
shr Bit shift right replacing left side with 0's
Xor Logical XOR

Operator Precedence

Operators allow for the manipulation of certain types of identifiers. For expressions with three
or more operands (i.e. 5*4 + 2), rules of precedence apply. The order of precedence for
operatorsis as follows:

Operator type

Unary Operators @ not

Multiplying Operators * [, div, nod, and, shl, shr
Adding Operators +, -, or, xor

Relational Operators = <>, 0%, >)= >{}=, in

Operations are performed from left to right while operations of higher precedence are
performed first. For more about operators see the chapter on Expressions.

Constants

A constant declaration (const) is an identifier that marks avalue that can't change. TMT
Pascal provides two standard types of constants:

= Integer and Real Number Constants

Integer constants are values that can be represented in either decimal (base 10) or
hexadecimal (base 16). A decimal number is a string of digits (0-9) that may be preceded
with aplus or minussign. A hexadecimal number is preceded by a dollar sign ($) followed
by a string of digits and the characters A through F. The following are valid integer
numbers:

100 - 255 100500 $FE $ABCD

Real constants are numbers that contain an integer portion, afractional portion, and an
exponent. Usereal constants when the fraction of a number is necessary. The syntax for
real constantsisasfollows:

[+]-]1 digits [.digits] [E[+]-] digits]
The letter E represents the exponent part of the real number. Exponents are powers of ten.

Both integer and real constants may not contain space characters. The following are valid
real constants:

1.0 -205.13 9019. 31E100 40. 71E- 10

13

14

Programmer’s Reference

The current version of TMT Pascal compiler does not provide constants of
Extended type.

= String Constants

String constants are strings of ASCII characters preceded by and followed by asingle
quote (‘). Use two single quotes (*) to represent a single quote within a string. A string
may also be constructed with the number symbol # or the caret symbol ». For more
information see the definition of Character types. The maximum size of a string constant is
255 characters. The following are valid examples of string constants:

‘This is a string’
"G A Bell will sound
#13#11' New Li ne’
‘Where”s the prograni

See also the chapter on Constant Declar ations.

Program Comments

A good programmer knows that comments within a source file can be very helpful. Comments
are delimited by «{ « and «} » or «(*» and «*)». All comments are ignored by TMT Pascal
during compilation. Comments cannot contain nested comments that use the same delimiters.
Below are examples of traditional Pascal comments:

{ This is a comment }

(* Anot her comment *)

(* This comment is { nested } *)
{ Another (* nested *) comment }
(* An invalid (* comment *) *)

In addition to traditional comments, TMT Pascal supports C/C++ and Ada-style end-line
comments. These begin with a double hyphen and span until the end of the line. For example:
[* This is Cstyle coment */

Space :=* '; -- initialize filler char

Fill Char(Ptr ($A0000), 64000, 0); // clear VGA video nenory

Remarks:

A comment that contains the dollar sign ($) immediately after opening {, (* or /* isacompiler
directive. A mnemonic of the compiler command follows the $ character.

Starting from version 3.0, TMT Pascal does not support Ada-style comments by

default. We are thinking about completely removing support for Ada-style comments

in the future and recommend that you replace all Ada-style commentsin your
programs by traditional Pascal or C/C++ styled comments. Use the { $AC+} compiler switch,
if you want to compile old sources with TMT Pascal 3.0 (see $AC: Ada-Style Comments
Switch).

1.4 Types

A type defines the kinds and ranges of values that constants, variables, procedures, and
functions may contain. Types also define the size of, as well as the operations on such
identifiers.

TMT PASCAL

Developer Guide

TMT Pascal comes with a powerful set of predefined types and it is possible to define new
types for constants and variables.

There are five basic type groups that are available under TMT Pascal. Each group contains
types with similar properties. They are the following:

Scalar Types.
Scalar types consist of an ordered set of values. Scalar types include all ordinal types as well
asreal types. Characters are also of scalar type.

Ordinal Types.
Ordinal types are a subset of scalar types. Ordinal typesinclude boolean, char, enumeration,
and integer. Reals are not ordinal types.

Procedure Types.
Procedure types contain the address in memory of a procedure or function.

Pointer Types.
Pointer types store the address of alocation in memory. Pointer types can be used to address
dynamic variables.

Structured Types.

Structured types are types that contain several components. Each component can be accessed
separately or the entire structure can be treated as a whole. Examples of structured types
include strings, arrays, records, sets, files, and objects.

Boolean Types

A boolean type isan ordinal that can hold one of the two values: True, False. Expressions that
evaluate to alogical “yes’ or “no” are of boolean type. if, while, repeat and other control
statements work with boolean expressions. The following code fragment,

whi | e not KeyPressed do;

causes program execution to pause until akey is pressed on the keyboard. KeyPressed is a
procedure declared in the Crt unit. The expression not KeyPressed resultsin a boolean value
that determines whether the while loop is executed. not performs alogical NOT on the
boolean returned by KeyPressed. The constants True and False are declared in the System unit
as boolean.

The evaluation model is controlled through the $B compiler directive. The default state is
{$B-}, sothecompiler generates short-circuit evaluation code. Inthe{ $B+} state, the
compiler generates complete evaluation.

Character Types

Character types require one byte of storage. They may consist of any ASCII character, for
instance, ‘A’ through ‘Z’, ‘0’ through ‘9’, or any control code. The code fragment below
shows various ways to initialize character type variables.

var

Nunber, Al pha, Bell, Eof Marker: Char;
begi n

Nunber

Al pha

Bel |

Eof Mar ker
end.

‘g5

o))

* >
N
:‘.G?

15

16

Programmer’s Reference

A character is normally delimited by two single quotes. However there are two other methods
of representing characters as seen in the example above: the caret symbol () and the number
symbol (#).

Use the caret to represent control codes—characters between 0 and 31 on the ASCII table. *G
stands for character number 7 because G is the seventh letter of the alphabet. When *G is used
during output, the computer’s bell will sound.

Use # to represent any ASCII character. Asin the example above, the end of file character,
which is defined as character number 27 on the ASCI| table, is assigned to the variable
EofMarker. Note that #27 isthe same as .

Integer Types

Integer types may contain both positive and negative integer values. Integer values may range
from -2,147,483,648 to 2,147,483,647 and other ranges are also supported. Each integer
variable requires two bytes of storage. The following isalist of additional predefined integer

types.

Type Range Si ze
Byt e 0 to 255 1
Short | nt -128 to 127 1
I nt eger -32,768 to 32,767 2
Smal | | nt -32,768 to 32,767 2
Vord 0 to 65,535 2
Longl nt -2,147,483,648 to 2,147, 483, 647 4
DWORD 0 to 4,294,967, 295 4
LongWor d 0 to 4,294,967, 295 4
Car di nal 0 to 4,294,967, 295 4

On the Intel 386+ CPU’s, operations performed with Longints (4 bytes) are faster than
operations with integers (2 bytes). Thisis due to the fact that registers on the 32-hit processors
are 32 bitswide.

Enumeration Types

Enumeration types are ordinals that represent a set of values specified by alist of identifiers.
Enumeration types are defined as follows:

identifier [,identifier]

Each identifier is a constant of the new type. Identifiers in enumeration types are assigned
values with the first equal to zero, the second equal to one, and so on. For instance, the
following enumeration type contains the seven days of the week:

= (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

In type Week, Sun has the value of zero, Mon has the value of one, Tue has the value of two,
and so on.

Enumerations are limited to 256 elements.

TMT PASCAL

Developer Guide

Subrange Types

Subrange types restrict the values allowed for atype. The subrange must consist of ordinal
type constants and the components of the range must be of the same type. Subranges are
defined as follows:

expression .. expression;

where the first expression is the lowest value of the range and the second expression is the
highest value. The following are examples of subranges:

type
Digits
Val ues

Real Types

Real datatypes contain integer values as well as afractional portion. Also known as floating
point numbers, each real type consists of a significant, the fractional part, and an exponent,
which is a power of ten.

TMT Pascal follows the |EEE standard for floating point number representation. There are
four real datatypesavailable under TMT Pascal: real, single, double, and extended.

Real Types.

Real types range from 2.9 x 10E-39 to 1.7 x 10E38 with 11 to 12 significant digits. Each
requires 6 bytes for storage. The internal format of TMT Pascal’sreal type differsto
Borland's.

Single Types.
Single types range from 1.5 x 10E-45 to 3.4 x 10E38 with 6 to 7 significant digits. Each
requires 4 bytes for storage.

Double Types.
Double types range from 5.0 x 10E-324 to 1.7 x 10E308 with 15 to 16 significant digits. Each
requires 8 bytes for storage.

Extended Types.
Extended types, the largest of all the real types, range from 1.9 x 10E-4951 to 1.1 x 10E4932
with 19 significant digits. Each requires 10 bytes for storage.

Pointer Types

Pointer types contain the address of an identifier or dynamically allocated memory. Pointer
types require a double word (32 bits for storage). While in protected mode, pointers contain a
32-bit offset and the segment is assumed to be the data segment. In this way pointers are
similar to the integer type Longint. To allocate dynamic variables see the chapter on Heap
Management. A pointer type must point to specific type. Pointer types are defined as follows:

ATypenane

The pointer type can be assigned the constant nil. When nil is assigned, the pointer does not
refer to any location in memory. Pointer is a predefined pointer type that is untyped. Pointer is
compatible with all other pointer types.

TMT Pascal supports the following arithmetical operations on pointers.

Examples:

17

18

Programmer’s Reference

p2 := pl + 1000;
pl := p2 - $FF;
inc(pl, 15);
dec(p2);

Where pl and p2 are variables of Pointer Type.

Pointer Dereference

Dereferencing is used to refer to the object which a pointer type pointsto. Use

Vari abl e®

to dereference a pointer type. It isimportant to note that pointer types must point to a specific
memory |location before they are dereferenced. Otherwise, the data pointed to is undefined.

Array Types

array types contain a sequence of components of a different type. Each component is
referenced by an index which also has a specific type. Arrays are defined as follows:

array [Ordinalindex [,Odinallndex]] of Arraytype;

where Ordinallndex is one of the following ordinal types: integer, char, enumeration,
Boolean, or subrange. Arraytype can be of any type, including another array type. The
following are examples of array types:

array [Bool ean] of Char;
array [Char] of Integer;
array [1..255] of Doubl e;

Subscripts are used to refer to a component of an array. Subscripting an array is specified as
follows:

Arraynane [expression [, expression]];

where expression is of the same type as the index. Expression must also lie within the range of
theindex. A runtime error is generated if expression lies outside the index range and range
checking isturned on, $R+.

String Types

Strings are arrays of characters. The maximum size of a string type is 255 characters. In the
following example two string variables are declared, one with a specific size, the other with
the maximum size of 255 characters.

S1: String[100];
S2: String;

The variable Sl holds only the first 100 characters of a string. S2 may contain up to 255
characters. TMT Pascal reserves one byte, which contains the size of the string. This size byte
isreserved in the byte that precedes the first character of a string. For instance,

S2 := ‘Hello Wrld;

is represented in memory as

TMT PASCAL

Developer Guide

#11,Hello World

All string operations, as well as functions and procedures that return or modify strings,
truncate strings that exceed 255 characters.

Set Types

Set types specify a subset of a set of values. The ordinal value of the set elements must range
between 0 and 255.

Characters

Enumeration type

Positive integer values
Subrange of the above three
Ordinal types

Each value in a set is defined by one bit, therefore each value is similar to a Boolean. The
following are examples of sets:

type
set of 0..7;
set of ‘0".."9";
set of Char;
set of Word; - This cannot be handl ed by BP.

Record Types

Record types are structures that contain components of different types. Each component of a
record is called afield. Variant sections are parts of records and can have multiple definitions.
Record type are defined as follows:

record
Fi el dlist
end
where Fieldlist is defined as:
[[Fi xedpart] | [Fixedpart;] [Variantpart]];
where Fixedpart is:
Field [; Field];
where Field is
identifier [,identifier] : ldentifiertype;
Variantpart is defined as follows:
case
[identifier:] Typenane of Variant [;Variant];
where Variant is:
Caserange [, Caserange] : (Fieldlist);
where Caserange is:

expression [..expression];

20

Programmer’s Reference

With a proper understanding of TMT Pascal record types, very powerful types can be defined.
The following are examples of record types:

type
Coordi nate = record
X, Y. Integer;
end;
Val ues = record
case Way: Bool ean of
True: (Rvalue : Extended);
Fal se: (1Value : Longint);
end;

To reference afield of arecord specify the record variable followed by a period (.) followed
by the field name. The following refers to the fields of Coordinate declared above:

Coor di nat e. x
Coordi nate.y

File Types

File types are structures that contain components of any type except another file type. File
types are defined as follows:

File [of Conponenttype];

If of is not specified and component types are not indicated then the file is untyped. Untyped
files are used to access files regardless of their structure. Text file types refer to afile of
ASCII characters grouped in lines. Text is a predefined type.

The record definitions used internally by TMT Pascal are also declared in the System unit.
TFileRec isused for both typed and untyped files.
type TFil eRec = object

magi ¢ : ATFi |l eRec;
nane : string;
handl e : Longint;
rec_len : Longint;
state : %1 ags;
rd_proc,

w_proc : function (F. Longint; Buf: Pointer; Len: Longint;
var Act: Longint): Longint;

procedure check_magi c;

procedur e check_opened;

procedur e check_readabl e;

procedure check_witeabl g;

procedure io_error(code: Integer);
end;

PFil eRec = ~TFil eRec;
TTextRec istheinternal format of a variable of type text.
type TText Rec = object(TFil eRec)

buffer : array [0..63] of Char;
i ndex . Longint;

| en_buf : Longint;

max_buf : Longint;

buf _adr : Pointer;

function Eof: Bool ean;

TMT PASCAL

Developer Guide

procedure init;

procedure fill _buf;

procedure fill _chr;

procedure skip_spaces;

procedure get_n_char(n: |nteger);
end;

PText Rec = "TText Rec;

Internal Type %flagsis declared as:

type %1ags = set of %ile_state;
where %file_stateis:

type %Yile_state =

(
% il e _readable, //00h
%ile witeable, //01h
% il e_opened, /102h
% il e_assigned, //03h
% il e_eof, /104h
%ile_text, /1 05h
%ile_file, /106h
%ile_fileof, /107h
%ile tty, /108h
% il e_special, /109h
% ile_settextbuf //0Ah

)

Procedure Types

Procedure types contain the address of a procedure or function. Procedure types are followed
by blocks of data and code and are defined as follows:

procedure identifier [(Parameterlist)]}

or

function identifier [(ParameterList)] : ReturnType}
ReturnType is the type of value returned by the function. ParameterList is defined as:

Par ameter [; Paranmeter]}
where Parameter is:

[var] identifier [,identifier] : Typenane}

var specifies avariable parameter. var parameters are passed by reference as opposed to
being passed by value. The following are examples of procedure types:

procedure PrintAt(X, Y: Integer; S: String);
function Max(Valuel, Value2: Integer): Integer;
procedure GetDir(Driver: Byte; var S: String);

Note that unlike pointers, procedure types occupy 8 bytes. Besides the address of the
procedure proper, the local frameis stored. This allows the forming of procedure
types out of local procedures.

21

22

Programmer’s Reference

Object Types

Object types are similar to record typesin that they contain components of different types.
However, unlike records, objects may contain methods and be inherited. The full description
of object types can be found elsewhere (see the OOP Extensions chapter.)

Type Compatibility

There are three levels of type compatibility. Each level along with its restrictionsis listed
below in order, from the most restrictive to the least restrictive.

Equivalent Types.
Two types are equivalent only if they are both defined from the same type declaration. That
declaration must be one if the following:

- A named type declared by atype declaration.
- A predeclared type.
- An unnamed type used in a declaration.

Compatible Types.
Two types are compatible if one of the following apply:

- They are equivalent.

- One typeis a subrange of another.

- Both are subranges of the same type.

- Both types are integers.

- Both types are reals.

- Both types are strings.

- Oneisachar or array of char and the other isastring.
- Both are set types and their base types are compatible.
- Both are arrays of char with the same length.

Assignable Types.
A typeis assignable to another type if one of the following apply:

- Both types are compatible.

- Assignment of an integer type to areal type.

- Assignment of a char type to a string type.

- An array of characters less than 256 charactersto a string.
- Both procedure types have the same parameters.

1.5 Declarations

The name of each identifier must be declared in your source code. By declaring an identifier
to be of a particular type, such asavariable, or constant, you define its size and attributes.

Pascal is ablock structured language. Each program, unit, procedure and function defines a
block. Blocks can be nested creating blocks within blocks. The block structure effects the
interpretation of identifiers such as constants, variables, types, and so on. Identifiers can have
different meanings depending upon which block is referenced.

When an identifier is declared it is defined from the point of its declaration to the end of the
inner most block that contains the declaration. Thisis the scope of the identifier. Redefinition
of an identifier is not allowed within the same block in which it was declared. Only in nested
blocks may an identifier be redefined. However in this case the new identifier does not refer to
the old identifier. In fact the old identifier is hidden until the end of the nested block.

In addition to the traditional Pascal syntax, TMT Pascal also alowslocal block declarations.
These are described below in the manual.

TMT PASCAL

Developer Guide

An identifier may not be referenced prior to its declaration, with one exception. A type name
can be used as the base type of a pointer if the name is then declared in the type declaration
that contains the reference. For instance:

type
Coor dPt r = ~Coordi nat e;
Coordi nate = record,;
X, VY . Integer;
end;

Asyou can see Coordinate is referenced prior to its declaration. The above declarationis
valid due to the fact that Coordinate is declared in the same type declaration as CoordPtr.

There are several declarations possible under TMT Pascal. They include:

Type Declarations

Label Declarations
Constant Declarations
Variable Declarations
Local Block Declarations

Type Declarations

Type declarations are preceded by the Type reserved word.
Type identifier = ldentifiertype;

Identifier isthe actual name of the new type you define. Identifiertype is the type of identifier.
| dentifiertype can be on of the following:

Anot her Type String Poi nt er File
Subr ange array set function
Enuner ati on record procedure Text

Some examples of type declarations are:

type
Fl oat = Ext ended,;
I nt = | nteger;
Fi | ename = array [0..8] of Char;
Fnameptr = Fi |l enane;
Seasons = (Wnter, Spring, Summer, Autumm);

Label Declarations

TMT Pascal statements may be labeled with one of two types of labels. A label can either be a
positive integer number (0...2147483647) or an identifier. Before using labels in your code, a
label must be declared. A label declaration is preceded by the label reserved word.

| abel identifier [,identifier];

Constant Declarations

There are two types of constantsand TMT Pascal interpretsthem in different ways.

23

24

Programmer’s Reference

Constants that are declared without a type may not be changed in the program. Constants that
are typed are the same as variables (described below), except that they contain an initial
value. These constants may be changed in the program. A constant declaration is preceded by
the const reserved word.

const identifier [:IdentifierType] = expression;

Identifier isthe actual name of the constant defined. | dentifier Type, which is optional,
specifies the type of the constant. Again, if atypeis specified, the constant isthe same as a
variable with aninitial value. Expression is assigned to the constant and must be evaluated at
compile time. The following are untyped constants and may not be modified:

const
Digit ='0.."9;
MaxSi ze = 100;
Msg = ‘This is a string constant’;

Typed constants may be of any type except for file, procedure, or function. Some examples of
typed constants are:

type
Coordi nate = record
X,y: Integer,;
end;

const
Ori gi npos: Coordinate = (x:0; y:0);

Narme : String = ‘Hello World!’;
StrSize : Integer = 100;
Ary . array[Fal se.. True] of Byte = (10, 15);

See also: Integer and Real Number Constants, String Constants

Variable Declarations

Variables store data during program execution. A variable declaration is preceded by the var
reserved word.

var identifier [,identifier]: ldentifierType;

Identifier isthe actual name of the variable defined. |dentifier Type specifies the type of the
variable. Variables, unlike constants, are not initialized. Their content prior to initialization is
undefined. It is possible to specify the absolute address of a variable. Following the

| dentifiertype specify the Absolute reserved word.

var
identifier [,identifier]: ldentifierType absol ute address;

Address may be either an identifier or an integer number indicating an offset. If Addressisan
identifier then TMT Pascal computesit’s offset. absolute maps the variable to the address
following the absolute statement. This identifier must be declared prior to using absolute. If a
variable is the absolute of another, both address the same data however the types may be
different. The following are examples of variable declarations.

const
Buf f Si ze = 900000; // 900K
var

HugeBuff : array [O0..BuffSize] of Char;
i,j,k, I : Integer;

TMT PASCAL

Developer Guide

Buf fptr : Longint;
p . Pointer absolute Buffptr;
Al pha : Char;

The absolute may refer to fields of records and objects. Also, the address of a global
record/object field can be used within the initialization of typed constants. Furthermore one
can use recursive initialization:

type rec = record

next : Arec;
buffer: array [1..10] of char;
buf adr: pointer;

end;

const cyclic: rec = (next: @yclic; buf_adr: @yclic.buffer);

Local Block Declarations

It is very often necessary to declare alocal variable with a short life-span. One has to do this
at the declaration part of a program or in the procedure body. Thisis not always convenient,
especialy if thereis a huge program with a complicated algorithm. For that case a special
construction has been added in TMT Pascal. Itiscalled aLocal or Nested Block. Such a block
isan ordinary compound statement which begins with the new reserved word declar e and
consists of two parts - declaration and execution:;

decl are

<decl aration part>
begi n

<execution part>
end;

This statement can be used in any place where a structured statement can be placed.
Example:

pr ogr am Decl Deno;
var
b: Integer;
begi n
declare // first local block
var
a: | nteger;
procedure pr_int(a: Integer);
var
i: Integer;
begi n
for i :=1to a do
declare //second | ocal bl ock
var
k: Integer;
begi n
k :=adivi;
Witeln(a, ' div ', i, ' = "', Kk);
end;
end;
begi n
a: =1,
Witeln(a);

26

Programmer’s Reference

b := 10;
pr_int(b);
end

end.
This example contains two local blocks: one of them in the program body and another in the
routine body. The first local block declares variable a and procedure pr_int, the second
declares one local variable k. It should be understood that the scope of ‘@ and pr_int isthe
interior of the “first local block,” and the scope of k isthe interior of the “second local block.

1.6 Expressions

Expressions are constructs made up of operators and operands. Expressions work with
existing data and return new data. In TMT Pascal there exist two types of operations, unary
and binary. Unary operations work with one operand and binary operations work with two.
Regardless of the operator, operands may be constants, variables, data returned by another
operator, or data returned by a function call. Operators can be grouped according to the types
they operate on. There are five groups of operators: integer, real, Boolean, set, and relational.

Here is a description of the operator groups:

Arithmetic Operators
Boolean Operators
Set Operators
Relational Operators
Typecasts

Operator Precedence

Arithmetic Operators

Standard arithmetic operators listed below.
Qper at or Operation

@ Poi nter formation

+ Unary sign identity
- Unary sign negation
+ Addi tion

- Subtraction

* Mul tiplication

D v I nt eger division

/ Real division

Mod I nt eger remai nder
And Logi cal AND

Xor Logi cal XOR

Not Logi cal NOT

O Logi cal OR

Shi Shift bits left

Shr Shift bits right

During binary operations both operands must be of compatible type. If the operands are of
compatible type then the operation results in the same type of the operand. If the types are
different then the result is the larger type.

For integer operations, operands are converted to Longint and results are of the same type as
the destination type. Longint or 32 bit operations are faster on the 80386 and 80486.

TMT PASCAL

Developer Guide

During real operations, operands are converted to extended type and results are of the same
type as the destination.

Boolean Operators

Boolean operators include logical AND, NOT, OR, and XOR. The operation of each is
summarized below:

Oper at or Logi cal Operation
AND Conj uncti on
NOT Negat i on
oR Di sjunction
XOR Excl usi ve Di sjunction

Boolean expressions that evaluate to True return a value of one. Boolean expressions that are
Falseresult in a zero value.

Set Operators

Set operators are defined as follows:

Qper at or Meani ng Qper ation
+ Uni on Yields elenents in either A or B
Di ff erence Yields elenments in A but not in B
* Intersection Yields elenents in both A and B

Relational Operators

Relational operators perform arithmetic, literal, and set comparisons. All relational operations
result in a Boolean type. Relational operators include:

Qperator Meani ng Appl i cabl e types
= Equal i ntegers, reals, bool eans,
chars, enunerations, strings,
sets, pointers

< Less than i ntegers, reals, bool ean
char, enunerations, strings,
poi nters
> Greater than i ntegers, reals, bool ean,
chars, enunerations, strings,
poi nters
<= Less than or equal, i ntegers, reals, bool eans,
set inclusion chars, enunerations, strings,
poi nters
>= Greater than or equal, integers, reals, bool eans,
set inclusion chars, enunmerations, strings,
poi nters
<> Not equal i ntegers, reals, bool eans,

chars, enunerations, strings,
sets, pointers

In Menber shi p A set type on the right and
the set's base type on the
| eft

27

28

Programmer’s Reference

Typecasts

Typecasts allow operands of one type to be converted to another type. Typecasts are allowed
on either values or variables. Typecasts on values are restricted to ordinal and pointer types.
The only restriction on typecasts on variables is that the sizes of both types must be the same.
The following are examples of typecasts.

Integer(‘0")

Bool ean(1)

Wordptr (@uf fPtr)
Char (27)

Longint (@uffPtr)}

Operator Precedence

For expressions with three or more operands (i.e. 2 - 244 / 4), rules of precedence apply. The
order of precedence for operatorsis listed from highest to lowest:

Oper ator Type Oper at or

Unary Operators @ Not

Mul tiplying Operators * [/, D v, Mbd, And, Shl, Shr
Addi ng Operators +, -, O, Xor

Rel ati onal Operators =, <>,<,>,<=,>=,1n

Operations are performed from left to right while operations of higher precedence are
performed first. For instance, the following expression:

7 +4* 2
is not the same as:
(7 + 4) * 2

Since multiplication has a higher precedence than addition, multiplication is performed first
followed by addition. Use parenthesis to separate operations that you want to be performed
first.

1.7 Statements

A statement indicates the action a program performs. Statements are separated by semicolons
(;). Statements may be preceded by alabel which consists either of an identifier or an
unsigned integer constant.

Assigments

An assignment assigns a value to a variable. An assignment takes the following form:
vari abl e : = expression;

where the value returned by expression is stored in variable. The type of the value returned by
expression must be compatible with the type of variable. If variable appearsin expression, its
value isthe value prior to the assignment. The following are examples of assignments:

const
Letter ="A;
var

TMT PASCAL

Developer Guide

Al pha . Char;
Value, i : Integer;
I : Longint;
S : String;
begi n
Al pha = Letter;
S = "A string variable';
Val ue = $643F;
[= 2675;

200 + (Vvalue * i);
end.

Compound Statements

Compound statements are comprised of single statements preceded by begin and followed by
end. Compound statements take the following form:

begi n
[statement [; statement]]
end

Compound statements allow one to place two or more statements wherever a statement is
called for within another statement.

Case Statement

The case statement selects from alist of statements basing it’s decision on the value of an
expression. case statements take the following form:

case expression of
Sel ector : statenent
[el se statenent]
end;

where expression is a value of ordinal type. The case expression value is matched against
each Selector. If amatch exists the statement following the matching Selector is executed.
Control isthen transferred out of the case. If no Selector matches the case expression then
control is passed to an optional else clause. Selector must evaluate to a constant at compile
time and is defined as:

expression [..expression] [,expression [..expression]]}

i f .. isspecified followed by another expression the case applies to the entire range
between the first expression and the second expression. The following is an example of the
case statement:

case I nt of

5 : WiteLn('Int is 5");
7..12,15: WitelLn('Between 7..12 or 15');
el se begi n
WitelLn(' Undefined."');
Cet Next I nt ;
end;
end;

Performance for large case statements improves if the most common subcases are listed first.

29

30

Programmer’s Reference

For Statement

The for statement allows for repetitive execution of one or more statements. for executes a
loop for a predetermined number of iterations. for statements take the following form:

for variable := expression to | downto expression
do statenent

where variable must be of ordinal type. The first expression following variable is theinitial
value that is assigned to variable and the second expression is the limit on the range of values
assigned to variable. Both expressions must be of compatible type.

Theto or downto clause specify specifies whether a variable isincremented or decremented
after each iteration of the loop. If to is specified, the variable isincremented until it hitsthe
limit of the second expression. downto decrements variable until it reaches the lower limit of
the second expression.

The following are examples of for loops:

for i :=1 to 100 do
begi n
Witeln(i);
Intarray[i] =1 + 4;
end;

for x := 5 downto 2 do
WitelLn(x);

A for loop is not executed if the first expression is greater than or less then the second
expression depending upon whether ato or downto was specified. For instance the following
for loop is not executed:

for i :=51to 4 do
WiteLn(*WII never output this string!’);

For aloop, the index variable must either be global or local to the procedure to which it
belongs.

Goto Statement

As mentioned above statements may be preceded by labels. The goto statement transfers
control to a specific label. The format of a goto statement is as follows:

goto | abel;

where label has been previously declared in the current block. The following is an example of
the goto statement:

| abel
Got oLoop;
var
i: Integer;
begi n
o= 1
Got oLoop:
Witeln(i);
Inc(i,2);
if i < 100 then
got o Got oLoop;
end.

TMT PASCAL

Developer Guide

If Statement

The If statement conditionally executes one of two statements based on the value of an
expression. If statements take the following form:

i f expression then
st at enent
[el se statenent]

where expression evaluates to a Boolean value. If expression resultsin True then the
statement following the reserved word then is executed. Control isthen transferred to the first
statement outside the if statement.

If expression evaluates to False and an else clause is specified then the statement following
elseis executed. If no else clause exists and expression is False then the if statement is passed
over. Thefollowing is an example of an if statement.

if Flag then

WitelLn(' Expression is True')
el se

WitelLn(‘ Expression is False');

The end of an if statement isindicated by a semicolon (;). In the above example, if Flagisa
constant then TMT Pascal optimizes code generation and automatically eliminates code that is
never executed.

InLine Statement

Theinline clause is used to define a short machine language routine. inline procedures are
treated as macros rather than procedure calls and are therefore extremely efficient. It is
recommended that you have thorough knowledge of 32 bit assembler before writing machine
code macros.

function |sLower(Ch: Char): Bool ean;

i nline(
$58/ { pop eax }
$3C/ $61/ { cnp al,'a' }
$OF/ $90/ $C4/ { setge ah }
$3C/ $7A/ { cnp al,'z' }
$OF/ $9E/ $C0/ { setle al }
$22/ $EO) { and al,ah }

Notice the use of new 80386 and 80486, Pentium, AMD 3DNow! and Intel MM X
instructions. For more information about CPU extensions refer to your Intel™ and/or AMD™
reference manuals.

Repeat Statement

Therepeat statement, much like the for statement, executes one or more statementsin aloop.
Unlike afor statement where the loop condition is tested prior to each iteration, arepeat
statement condition is tested after each iteration. Therefore arepeat loop is executed at |east
once. repeat takes the following form:

repeat
statement [; statement]

until expression;

31

32

Programmer’s Reference

where the repeat 1oop executes until the expression evaluates to the boolean value of True.
When the expression is False, the loop is executed again. The following is an example of the
repeat statement:

repeat {Do nothing} until KeyPressed;

While Statement

The While statement executes one or more statementsin aloop. while statements take the
following form:

whi | e expression do
st at enent

where expression evaluates to a Boolean type. A while loop executes until expression
evaluates to False. when False, control is transferred to the first statement outside the while
loop.

With Statement

The with statement allows one to refer to the fields of arecord type asif they were
independent variables. with takes the following form:

with variable [, variable] do
st at enent

where variable refersto arecord type. Statement may refer to the fields of variable without
specifying the variable name. The following is an example of the with statement:

type
ScreenString = record
X, y: Integer;
str @ String;

end;
var
ScrnSay : ScreenString;
begin
with ScrnSay do
begi n
X = 5;
X = 5;
y 1= 10;
str:= "Hello World!'";
end;
end.

Mem, MemW, MemL, and MemD

TMT Pascal implements four predefined arraysto directly access memory:
Mem, MemW, MemL, and MemD.

» Each component of Mem is a Byte

» Each component of MemW isaWord

» Each component of MemL isaLongint.

« Each component of MemD isa DWORD.

TMT PASCAL

Developer Guide

See also: Memory Organization

Port, PortW and PortD

TMT Pascal implements three predefined arrays to directly access 80x86 CPU data ports:
Port, PortW, and PortD.

Port, PortW, and PortD are one-dimensional arrays, and each element represents a data port
whose port address corresponds to its index.

» Each component of Port isaByte
» Each component of PortW isaWord
e Each component of PortD isa DWORD.

When avalue is assigned to a component of Port, PortW or PortD, the value is output to the
selected port. When a component of Port, PortW or PortD is referenced in an expression, its
value isinput from the selected port.

1.8 Programs and Units

TMT Pascal source files contain units, programs, or both. A unit is a collection of procedures,
functions, and data that is accessible to other programs or units. Units aid in the modular
design of applications and are similar to libraries. Units may not be executed directly. A
program consists of one or more procedures or functions. The main procedure of aprogramis
executed during runtime.

Units

Units can be compiled separately and take the following form:

uni t Unit name;
interface
[Decl arati on]
i mpl enent ati on
[Decl aration]
[

begi n
[statement [; statement]]

]

end.

Unitname is the name of the unit. This is the same name that you will use in programs to
reference the unit. There are three sections within each unit.

Inter face Section

Theinterface section contains declarations of types, constants, variables, procedures, and
functions that are public and accessible to other programs and units. When declaring
procedures and functions in the Interface section, only the procedure header is required. These
declarations are similar to using the forward clause that tells TMT Pascal that the complete
declaration is further ahead in the program. The entire procedure declaration is done in the
implementation section. Local variables and procedures that need not be accessible outside
of the unit may be declared in the implementation section.

33

34

Programmer’s Reference

Implementation Section

The implementation section contains local types, constants, variables, labels, procedures and
functions. Procedures and functions are local to the unit unless their header is aso declared in
the interface section. The implementation section contains complete procedure and function
declarations.

Unit Initialization

Theinitialization section starts immediately after the begin statement. This code block is
executed by the main program that uses the unit. It is executed prior to the main code block.

Each unit is terminated by the end statement followed by a period. The reserved words
Interface and |mplementation must be specified in a unit. Theinitialization section is optional.

In Borland Pascal, private procedures are compiled as near while public procedures are far.
Therefore private procedures are more efficient. In TMT Pascal both private and public
procedures are near and equally efficient.

Programs

Programs require a different format from units. The general format takes the following form:

[programidentifier;]
[uses Unitnane [, Unitnane]]
[Decl arati on]
begi n

statement [; statenent]
end.

Theidentifier following the program statement declares the name of the program. Program
files are terminated by the end statement followed by a period (.).

The uses statement tells TMT Pascal which unitsit uses. Unitnames listed after the uses
statement are loaded by TMT Pascal. Procedures and variables referenced by the program are
linked into the executable generated. All types, constants, variables, and functions declared in
the Interface section of units are accessible to the program.

All text beyond the final end statement in either a unit or programisignored by TMT Pascal.

i In TMT Pascal the main program may contain interface and implementation parts as
well. This allows access to the variables of the main program from other modules:

/1 Test Program
program Test;

interface
var gl obal: Integer;

i mpl enent ati on
uses Unit Test;

begin
UnitTest. Wite;
end.

[/ Test Unit
unit UnitTest;

TMT PASCAL

Developer Guide

interface
procedure Wite_ gl obal;

i mpl enent ati on

uses Test;
procedure Wite gl obal;
begi n
Wite(test.global);
end;
end.

The name of the file that contains the text of the main program or unit must be
identical with the name that follows the keyword pr ogram.

1.9 Dynamic-Link Libraries(DLL’S)

Targets: 052, Win32

About DLL’s

In Microsoft® Windows® and IBM © OS/2 © operating systems, dynamic-link libraries
(DLL) are modules that contain functions and data. A DLL isloaded at runtime by its calling
modules (.EXE or DLL). When aDLL isloaded, it is mapped into the address space of the
calling process.

Dynamic linking has the following advantages over static linking:

» Processesthat load aDLL at the same base address can use asingle DLL simultaneously,
sharing a single copy of the DLL code in physical memory. Doing this saves memory and
reduces swapping.

* Whenthefunctionsin aDLL change, the applications that use them do not need to be
recompiled or relinked as long as the function arguments, calling conventions, and return
values do not change. In contrast, statically linked object code requires that the
application be relinked when the functions change.

e A DLL can provide after-market support. For example, adisplay driver DLL can be
modified to support a display that was not available when the application was initialy
shipped.

» Programs written in different programming languages can call the same DLL function as
long as the programs follow the same calling convention that the function uses. The
calling convention (such as C, Pascal, or standard call) controls the order in which the
calling function must push the arguments onto the stack, whether the function or the
calling function is responsible for cleaning up the stack, and whether any arguments are
passed in registers. For more information, see the documentation included with your
compiler.

A potential disadvantage to using DLLs is that the application is not self-contained; it depends
on the existence of a separate DLL module. The system terminates processes using load-time
dynamic linking if they require a DLL that is not found at process startup and gives an error
message to the user. The system does hot terminate a process using run-time dynamic linking
in this situation, but functions exported by the DLL are not available to the program.

DL Ls can define two kinds of functions: exported and internal. The exported functions can be
called by other modules. Internal functions can only be called from within the DLL where

35

36

Programmer’s Reference

they are defined. Although DLLs can export data, such datais usually used only by its
functions.

DL Ls provide a way to modularize applications so that functionality can be updated and
reused more easilly. They also help reduce memory overhead when several applications use
the same functionality at the same time, because although each application getsits own copy
of the data, they can share the code.

TMT Pascal Multitarget support DLLsfor Win32 and OS/2 compilation targets. DLLs are not
supported for MS-DOS protected mode target.

Using DLLs

TMT Pascal provides two ways to import procedures and functions:

e by new name
e byindex

Example:
This external declaration imports the function ExitProcess from the system DLL called
KERNEL 32 (the Windows 32 kernel):

procedure ExitProcess conv arg_stdcall (uExitCode: DWORD);
ext ernal kernel 32dl|1 name ' ExitProcess';

Example:
This example program imports ArcCos and ArcSin functions from the DLL called ARCs (see
Writing DLLs):

program Test DLL;
uses Strings;

const
ARCs = "arcs.dll"';

/1 inmport by name

{$ifdef __ WN32__}

function ArcCos conv arg_stdcall (X Extended): Extended,
external ARCs name 'ArcCos';

{ el se}

function ArcCos conv arg_os2 (X Extended): Extended;
external ARCs nane 'ArcCos';

{$endi f}

/1 import by index

{$ifdef __ WN32__}

function ArcSin conv arg_stdcall (X Extended): Extended;
external ARCs index 1;

{$el se}

function ArcSin conv arg_os2 (X Extended): Extended;
external ARCs index 1;

{$endi f}

var Arg: Extended,
begin

repeat
Wite(' Argunent ? ');

TMT PASCAL

Developer Guide

Readl n(Arg) ;
if (Arg < -1) or (Arg > 1) then
Witel n(' Argunent nust be in range: [-1..1]");
until (Arg >= -1) and (Arg <= 1);
Witeln(' ArcCos(', FIs(Arg), ') ", Fls(ArcCos(Arg)));
Witeln('ArcSin(', FIs(Arg), ") ", Fls(ArcSin(Arg)));
end.

Writing DLLs

The structure of aTMT Pascal DLL isidentical to that of a program, except that aDLL starts
with alibrary header (Library) instead of a program header (Program).

All procedures and functions which are to be exported by a DLL, must be compiled with the
export procedure directive.

If you want your DLL to be available to applications written in other languages, it’s safest to
specify the arg_stdcall calling convention in the declarations of exported functions. Other
languages may not support TMT Pascal’ s default register calling convention.

Example:

/1 This inplenents a very sinple DLL with two exported
functions:

library ARCs;

/1 The export procedure directive prepares ArcCos
/1 and ArcSin for exporting

uses Mat h;
{$ifdef __ WN32__}
function ArcCos conv arg_stdcall (X Extended): Extended,;
{ $el se}
function ArcCos conv arg_os2 (X. Extended): Extended;
{$endi f}
begi n
Result := RadToDeg(ArcTan2(Sqrt(1 - X * X), X));
end;

{$ifdef __ WN32__}
function ArcSin conv arg_stdcall (X Extended): Extended;
{ $el se}
function ArcSin conv arg os2 (Xi Extended): Extended;
{$endi f}
begi n
Result := RadToDeg(ArcTan2(X, Sqgrt(1 - X * X)));
end;

/1 The exports clause actually exports the two routines,
/1 supplying an optional ordinal number for each of them

exports
ArcCos nane ' ArcCos', /1 export by nane
ArcSin index 1; /1 export by index
begi n

/1 Do nothing
end.

37

38

Programmer’s Reference

Global variables in DLLs

Global variables declared in aDLL cannot be imported by a TMT Pascal application. A DLL
can be used by several applications at once, but each application has a copy of the DLL inits
own process space, with its own set of global variables. For multiple DLLs or multiple
instances of a DLL to share memory, they must use memory-mapped files. Refer to the
Windows API documentation for further information.

Import Units

Y ou can place declarations of imported procedures and functions directly in the program that
imports them. They are usually grouped together in an “import unit” that contains
declarations for all procedures and functionsin aDLL, along with any constants and types
reguired to interface with the DLL. For instance, the Windows and OS2M API are import
units.

Of course, import units are not a requirement of the DLL interface, but they do simplify
maintenance of projects that use multiple DLLs. Also, when the associated DLL is modified,
only the import unit needs updating to reflect the changes.

1.10 Procedur es and Functions

Procedures are a sequence of instructions that are separate from the main code block.
Functions are procedures that return a value. Other than this difference, both procedures and
functions are the same.

Procedures are blocks of code that are called from one or more places throughout a program.
Procedures make source code more readable and reduce the size of the executable because
repetitive blocks of code are replaced with a call to a procedure. Both procedures and
functions accept parameters. Parameters allow the calling routine to communicate with a
procedure.

Parameters can be passed by value or by reference or by constant reference.

If passed by value, only the value of the parameter is passed and the procedure has no access
to the actual variable. One can modify the value parameter. It will have an effect only inside
of the procedure body and will not change the actual variable.

If passed by reference, also known asvar parameters, an address of the memory |location
containing the value is passed thus making it possible to modify the variable.

If passed by constant reference, also known as const parameters, an address of the memory
location containing the value is passed but the compiler does not allow one to modify a
constant parameter and does not allow passing one as an actual variable parameter to another
procedure or function.

Procedures and Functions Declaration

Procedures and functions take the following form:
procedure identifier [(Parameterlist)];
or

function identifier [(Parameterlist)] : ReturnType;

TMT PASCAL

Developer Guide

ReturnType is the type of the value returned by the function. Parameterlist is defined as:
Par ameter [; Parameter];

where Parameter is:

[var] identifier [,identifier] [: TypeNane];

or

[const] identifier [,identifier] [: TypeNane];

var specifies avariable parameter. const specifies a constant parameters. var and const
parameters are passed by reference as opposed to being passed var and const parameters are
passed by reference as opposed to being passed by value.

The body of a procedure or function takes the following form:

[Decl arati ons]
begi n

statement [; statement]
end;

Types, labels, constants, and variables declared in the declaration section prior to the begin
statement are local variables. Space for these variables is allocated only when the procedure is
caled. Like al variable declarations their datais undefined until initialized. TMT Pascal
procedures and functions may be called recursively.

All identifiers must be declared prior to being referenced. The same rule appliesto procedures
and functions.

Forward Declaration

Theforward clause is used to define a procedure prior to its complete declaration. forward
tellsTMT Pascal that the declaration is further ahead in the program. A forwar d procedure
declaration takes the following form:

Pr ocedur eheader; forward;

External Declaration

The External clauseis used to define a procedure that is linked in from an assembly object.

Example:
R R R [vga.asm ----------------

P386
MODEL FLAT, PASCAL

CODESEG

GLOBAL SETVI DEOVODE: PROC

PROC SETVI DEOMODE USES EAX, MODE: WORD
MOV AX, [MODE]
| NT 10H
RET

ENDP SETVI DEOMODE

GLOBAL CLEARVGA: PROC

39

40

Programmer’s Reference

PROC CLEARVGA USES ECX, COLOR BYTE

MOV EDI, OAOOOOH
MOV AL, [COLOR|
MOV AH AL
MOV ECX, EAX
SHL EAX, 16
MOV AX, CX

MOV ECX, 64000/ 4
CLD

REP STOSD

RET

ENDP CLEARVGA

FEETETEEErrrrrrll [Test.opas] (10001110000 0771
program Test;

{$ifndef _ DOS }

This program can not be conpiled for OS/2 or Wn32
{$endi f}

uses CRT;

{$l vga} /'l include vga.obj file

procedure Set Vi deoMode(Mode: Word); external;
procedure Cl earVGA(Col or: Byte); external;

begin
Set Vi deoMbde($13); // setup VGV MCGA node 320x200
Cl ear VGA(10) ; /1 fill screen with green col or
ReadKey; /1 wait for key hit
Cl ear VGA(15) ; [l fill screen with white col or
ReadKey; /1 wait for key hit
Cl ear VGA(0) ; [l fill screen with black col or
ReadKey; /1 wait for key hit
Set Vi deoMbde($03); // setup VGA text node 80x25
end.

FEEEEEEEE b r b b r bbb rrd

See also: Dynamic-Link Libraries(DLL’S)

Interrupt Procedure

In TMT Pascal, the Interrupt clause defines a procedure that isto be used as an interrupt
handler.

The parameters of an interrupt procedure are the CPU registers. The following is the order of
the CPU registers: EFLAGS, CS, EIP, EAX, EBX, ECX, EDX, ESI, EDI, DS, ES, EBP. If
these register variables are assigned a new value, upon completion of the interrupt the new
values will be restored onto the actual CPU registers.

Declaration:
procedure IntProc(used registers); interrupt;

An example below shows you a simple method of working with interrupt-handlers.

TMT PASCAL

Developer Guide

program Ti ner 1;

uses Dos, Crt;

var
I nt 1CSave: FarPointer;
Ti me: Longl nt;

/1 Ti mer Handl er
procedure Ti merHandl er; Interrupt;

var
StoreX, StoreY: Wrd;
begi n
Inc(tinme);

St oreX: = \WereX;
St oreY: = \Werey,
CGot oXY(1,1);
Wite(tine);
Cot oXY(StoreX, StoreY);
Port[$20] := $20;
end;
begi n
CrsScr;
Time := 0;
Get I nt Vec($1C, |nt1CSave);
Set | nt Vec($1C, @i nerHandl er);
Witeln;
Witeln(' Type sonething and press "ENTER' to exit');
Readl n;
Set I nt Vec($1C, |nt 1CSave);
end.

When using Intr() and MsDos(), keep in mind that the DOS interrupt handlers can
deal only with the addresses from the 1% megabyte of memory.

Procedural Value

TMT Pascal has a notion of a procedural value. It gives an opportunity to use a procedure or
function in a program as a usual simple type object such as enumerate type or subrange type.
One can declare a variable of the procedural type, make an assignment to it, and invoke the
procedure body from it.

The procedural value implemented inthe TMT Pascal occupies 8 bytes of memory and
consists of two parts: the entry point to the routine and the reference to the local environment
of the routine (known as a routine base). The format of a procedural value is the following:

0 +
I The entry point :
e !
I The Il ocal environnent |
8 Ao +

Thefirst part is needed for calling the routine. The second part is used to access the routine
variables.

Such format of the procedural value isincompatible with the Borland Pascal format which has
only the entry point.

Furthermore, the stack frame structure and parameter passing conventions differ from those in
Borland Pascal.

41

42

Programmer’s Reference

Thus the approach used in TVision and CLassLib for writing iterations cannot be used.
However, we offer this correct and reliable (and more standard) way:

type list = object
next: ~list;
procedure for _all (procedure body(var v));
end;
procedure list.for_all;
var
p: “list;
begin
p := @elf;
r epeat
body(p) ;
p := p”™.next,;
end;
end;

type int_list = object(list)
val ue: integer;
function first _positive: ~int_list;

end;

function int_list.first_positive;
| abel CX;

var

res: ~int_list;
procedure do_item(var v);
begi n
if int_list (v).value > 0 then
begin
res .= @;
goto OK;
end
end;
begin
res := nil;
for_all(do_item;
(0 ¢
first_positive := res;
end;

The procedural value from a method or object can be obtained by selecting the method from
some object value (not from atype). The parameters of this procedural value must match the
parameters of the method. The invocation of such a procedural value is an invocation of the
corresponding method of the object. The reference to the object is transferred through the base
of the procedural value.

Y ou can use only global procedural valuesto initialize a type constant.

Procedural values may be used only while the environment where they were formed is still in
existence. Thus,

— for local procedures—until the exit from the block, in which they are described;
— for methods—while the underlying object till exists.

Using Statement as Procedure

With TMT Pascal you can use any statement as a procedure body, except for the assignment
and procedure calls.

TMT PASCAL

Developer Guide

The RESULT variable in the body of such functions denotes the variable that contains the
return value. The RESULT is of the function return type and may be used as a variable without
any restrictions.

With TMT Pascal you can enter the procedure body directly as a procedure parameter. The
procedure or function header (if not specified) takes the procedural parameter type. If the
procedure header is specified, the procedure name is omitted.

Example:
function Integral (function f(a: Real):Real; |ow, high, step:
Real): Real;
begin ... end,
Witeln(integral (

function(x: Real): Real; begin Result := sqrt(x) end, 0, 10,
0.1));

Witeln(integral (begin Result := sqrt(a) end, 0, 10, 0.1));
Witeln(integral (

function; /1 function keyword needed
var X: Real; /1l for local declaration
begin x := sqrt(a); Result := x end, 0, 10, 0.1)
)
Witeln(integra
decl ar e; /1 other way
var Xx: Real;// for local variable declaration
begi n
X 1= sqrt(a);
Result := x
end, 0, 10, 0.1)
)

TMT Pascal allows an exit from alocal procedure to the one that containsit. Thisfeatureis
listed in the Pascal’s ANSI standard but not realized in Borland Pascal. Together with
procedural values, thisisvery useful for error handling:

programtest;
var
on_eof: procedure;
function read_char: char;
var
c: char;
begi n
if EOF(Input) then on_eof;
Read(c);
Read_char : = c;
end;
procedure p;
| abel eof reached,;
procedure go_eof; begin goto eof reached; end;
begi n
on_eof := go_eof;
while True do Wite(read_char);
Eof reached:
Witeln('*** EOF ***');
on_eof :=nil;
end;
begi n
p;
end.

44

Programmer’s Reference

break and continue operators cannot be used to exit from a procedure. Use goto

instead.
Example:
{ incorrect exanple }
for i :=1to 10 do
Witeln (
i ntegral (/1 from previous exanpl e
if a<o
then break // incorrect
else result :=sqrt (a),
i, i +1, 0.01)
)
{ correct exanple }
decl are
| abel L;
begin
for i :=1to 10 do Witeln (
i ntegral (
if a<o
then goto L // correct
el se result :=sqrt (a), i, i + 1, 0.01)
)

Functions may return any values of any type, including structures and arrays.

1.11 OOP Extensions

TMT Pascal implements object oriented programming (OOP) extensions similar to the OOP
extensionsin Borland Pascal. This sections describes the applicable syntax of OOP.

Object

An object isastructure that consists of fields and methods. The fields are effectively
declarations of data while the methods define routines that act on the data. Object types allow
four types of routines: procedures, functions, and also constructors and destructors; the latter
two are alowed only within objects.

See also Object Syntax.

Inheritance

One object type can extend another object type by adding or replacing fields and methods. In
this case the new object is said to be a descendant object; the older object is said to be an
ancestor object. The process of an extension is called its inheritance. The descendant object
type may have its own descendants; these are also viewed as the descendants of the original
ancestor object. The domain of an object, isthe object together with all of its descendants.

Object Syntax

The syntax of an object type declaration is

TMT PASCAL

Developer Guide

obj ect [heritage]

Conponent |i st

[private Component list]
end

where Component list is defined as:

[Fieldlist]

[Method Iist]
Heri t age:

(object type identifier)
Fieldlist:

[field entry [; Field list]]
Field entry:

identifier list : type
Met hodLi st :

[method entry [; MethodList]]
Met hod entry:

[nethod heading [; virtual]]

Restrictions On Object Description

object types can be declared anywhere atype identifier is allowed by Pascal’ s syntax. object
types can be declared within procedures, functions, or other methods if the declaration is not
ambiguous.

Like records, object types cannot include File components or records or objects that include
‘file’ components.

OOP Scopes

Component identifiers are visible in al the methods throughout the domain of the object,
including the procedures, functions, destructors and constructors that implement the methods
of the object type and its descendants. However, the scopes of the fields and methods declared
in the private section of the object type declaration are restricted to the unit that contains the
definition of the object type. private fields and methods are inaccessible from other units.
Private fields and methods can, however, be accessed from other object types declared in the
same unit. Below are examples of several objects:

type Point =
record
X, Y: Longint;
end

type Circle =
obj ect
Center: Point;
Radi us: Longi st;
procedure Show,
procedure Hi de;
end;

type Ellipse =
object (Crcle)
Radi us2: Longint;

45

46

Programmer’s Reference

Angl e: Real;

procedur e Show;

procedur e Rotate(NewAngle: Real);
end;

Here, the object type Ellipse ‘inherits the Center and Radius fields from Circle. It also adds a
new Radius2 and Angle. Furthermore, it uses the method Hide inherited from Circle; it
overrides the method Show and adds a new method, Rotate. The declaration of an object file
includes just the headers of the methods. The methods themselves should appear somewhere
within the current scope. In this way, method declarations are similar to forwarded routines.
When specified, methods names are qualified with object names. For example

procedure Circle. Draw,
begin

Graph. Gircle(X, Y, Radi us);
end;

Note that within the method declaration, the fields of the object are visible to the compiler.

Public and Private declarations

Public and private are standard directivesin the Object Pascal language. Treat them asif they
were reserved words. For readability, it is best to organize an object declaration by visibility,
placing all the private members together, followed by all the protected members, and so on.
Thisway each visibility reserved word appears at most once and marks the beginning of a
new section of the declaration. So atypical object declaration should look like this:

type
TObj ect = obj ect
private
{ Private declarations }
public
{ Public declarations }
end;

The scope of component identifiers declared in private component sections is restricted to the
module that contains the object type declaration. Keep in mind that:

* Inside the module, private component identifiers act like normal public component
identifiers.

e Qutside the module, private component identifiers are unknown and inaccessible.

Usethe public part to

» Declare data fields you want methods in objects in other units to access
« Declare methods you want objectsin other units to access

Declarationsin the private part are restricted in their access. If you declare fields or methods
to be private, they are unknown and inaccessible outside the unit the object is defined in. Use
the private part to

» Declare datafields you want only methods in the current unit to access
» Declare methods you want only objects defined in the current unit to access

TMT PASCAL

Developer Guide

Virtual Methods

Methods can be either static or virtual. Callsto static methods are resolved at compilation.
Callsto virtual methods are resolved at run time with delayed or late binding. By default the
methods are static; virtual methods contain a specia keyword virtual as part of their
declaration. Static methods can be overridden without restrictions. However, virtual method
override must be done by a method that uses exactly the same syntax, e.g. has the same
number and types of the arguments. Objects that contain virtual methods require building a
special jump table, called the Virtual Method Table (VMT). The VMT is created during the
initialization of the object through a constructor call.

Constructors

Constructors initialize (instantiate) objects by creating and filling their VMT. Any object that
uses virtual methods must be first initialized.

type Circle =
obj ect
Center: Point;
Radi us: Longint;
constructor Init(Z: Point; R Longint);
procedure Show;, virtual;
procedure Hi de;
destructor Kill;

end;

var
C. Circle;
P: Point;

The following code will instantiate, display, hide, and display the circle C:

P. X: =20;
P. X: =40;
C.Init(P,100);
C. Show,
Wi | e Not KeyPressed Do;
C. Hi de;
CKill;
where;
constructor Circle.lnit(Z: Point; R Longint);
begi n
Center: =P;
Radi us: =R;
end;

Besides initializing the fields of the circle C; C.Init also createsaVMT table. Thistableis
essential for calling a virtual method, such as Show.

Without the C.Init call, the example above will fail (probably cause a run-time exception or
halt the system). However, when the example is compiled with the range-check { $R+}
switch on, TMT Pascal will automatically detect calls from a non-instantiated method and
produce a run-time error.

See also Destructors

47

48

Programmer’s Reference

Fail procedure

Called from within a constructor, Fail causes the constructor to de-allocate a dynamic object it
has just alocated.

Declaration:
procedure Fail;
Remarks:

Fail must be called only if one of the constructor’s operations fails.

Using New Procedure (OOP)

In most cases, instantiating of an object is combined with allocation of memory for the object:

var C. ~Circle;
begi n
New(C) ;
Clnit(P, R;

The extended syntax of the New procedure allows one to combine the operation:

var C. ~Circle;
begi n
New(C. lnit(P, R));

Note that constructors cannot be virtual methods, since virtual methods cannot be called
before a constructor initializesthe VMT.

See also New

Desctructors

Destructors are used to clean up after an object is no longer needed. Unlike constructors,
destructors can be virtual. Destruction of an object is often combined with deallocation of its
memory with the Dispose procedure:

var C. ~Circle;
begin
New(C) ;
Clnit(P,R;

CKill;
Di spose(O);
end;

If a constructor fails to perform initialization (often because of its inability to allocate

memory) for the structures affiliated with the object, it can execute a special system function
Fail. Fail signals TMT Pascal to reverse al allocation of the object that might have occurred
and return nil as the value of the object’s pointer. Fail can be called only within constructors.

See dso Constructors

TMT PASCAL | 49

Developer Guide

Inherited reserved word

Inherited can be used to denote the ancestor of the enclosing method' s object type. inherited
cannot be used within methods of an object type that has no ancestor.

Self argument

Methods have an additional implicit argument, called Self, which is automatically supplied by
the compiler. Self contains the instance of the object for which the method was called. Self, as
well, asal of itsfields are automatically added to the method’ s symbol table.

1.12 Open Arrays

TMT Pascal allows one to use a multidimensional open array as a parameter in procedures
and functions. The open array parameter has the following format description:

array [din] of type,

where dimis a positive integer constant, defining the number of dimensions, and typeisthe
type of the array elements. To determine the upper bounds of the array, use the high (array)
function. It returns a vector of Longints (array [0..dim-1] of Longint) containing the upper
bounds. The lower bounds are always set to 0. The vector of the lower bounds can be obtained
with a L ow function.

Example:
procedure print_vector (v: array(l) of Double);
var
i: integer;
begi n
for i :=0 to high(v)[0] do Wite(v[i]:10:6, ' ');
Witeln;
end;
procedure print_matrix(m array(2) of double);
var
i: integer;
begi n
for i :=0to high(m[0] do print_vector(nfi]);
Witeln;
end,

const a: array[1l..3, 1..3] of Double =
((1,0,2),(2,1,0),(1,2,1));
begi n
print_matrix(a);
end.

1.13 User Defined Operators

TMT Pascal allows redefining of the standard operators on predefined types and overloading
of these operators for new types. For this, it uses the construction

over| oad

The syntax is:

50

Programmer’s Reference

overload op_sign = qualified procedure identifier;

Where the op_sign is one of the standard operator symbols:

+ -/ = <> <> <= o>=
and or xor shl shr nod div in not
1= -1= *i= =

When are-defined operator is used, TMT Pascal uses the last definition that could be applied
toward operands of given types. For example, this fragment:

function add2_rr (a, b: Real): Real;
Result := (a + b) * 2;

function add2_ii (a, b: Integer): Integer;
Result := (a + b) * 2;

overload + = add_rr;
overload + = add_ii;

redefinesthe “+” operator. Notice that the order of overload’sisimportant. The reverse order
add_ii;
add_rr;

overl oad +
overl oad +

will cause add_rr to be used always since integers can always be cast into reals.

In the SOURCES subdirectory you can find the source of the COMP module which realizes
the complex numbers and defines the operators on them.

Remarks:

e Theoperators +:=, -;=, *:= and /:= have the lowest precedence (lower, than the
comparison operators) and are right-associative.

e Theoperators“+:=" and “-:=" are predefined for al integer and real types.

* Theoperators“*:=" and “/:=" are predefined for all real types, with the obvious meaning.

1.14 Built-in Assembler

TMT Pascal allows mixing assembly language code with Pascal using two distinct methods:

Using external assembly files, compiled with a suitable 32-bit assembler. These can be linked
inwith the {$L} Pascal directive.

Using built-in assembly code, which can be placed inside Pascal source files.
This chapter describes the built-in assembler (BASM).

Since the program created by the TMT Pascal is executed in the flat model, the far call and
jump commands as well as the @Code and @Data symbols are not implemented.

Asm Statement

The built-in assembler isinvoked with the asm statement. The syntax of the asm statement is

asm
[Assenbl er St at enent (s)]

end;

The asm statement may appear anywhere where a Pascal statement allowed.

TMT PASCAL

Developer Guide

asm
MOV Al, Val ue
MOV DX, ThePort
QUT DX, AL

end;

Assembler Procedure

The built-in assembler can also be used to write entire procedures in assembler language.
Such procedures should have the assembler keyword appended after a procedure header.

function Mul tBy9(X: Longint):Longint;
assenbl er;
asm
MOV EAX [X]
LEA EAX [EAX* 8+EAX]
end;

The function above used the 180386 index scaling feature to implement very fast
multiplication by 9.

Assembler procedures differ from the standard Pascal proceduresin the following ways:

No Return variable

Thereis no return variable. Y ou must return the function results in an appropriate register.

More precisely,

* Ordinal valuesarereturned in AL (8-bit values), AX (16-bit values), or EAX (32-bit
values).

» Real valuesarereturned in DX:BX:AX.

» Floating point (8087) values are returned in ST(0).

* Pointers arereturned in EAX.

e Strings arereturned in atemporary location pointed by the @Result symbol.

Structured variables
Structured arguments (i.e. strings, objects, records) are not copied into the local variables.
They should be treated as var parameters.

Stack Frame
Assembler procedures have no stack frames if they have no arguments and no local symbols.
Generally, the stack frame supplied by the built-in assembler is

PUSH EBP /1 Appears if locals + paranms >0
MoV EBP, ESP /1l Appears if locals + parans >0
SuB ESP, locals // Appears if locals + parans >0
i_iEAVE /1 Appears if locals + paranms >0
RETN parans /1 Al ways appears

Here Localsisthe total size of local parameters, Paramsis the total size of procedure
parameters.

Register Preservations

Assembler code should preserve the following registers: DS, CS, SS, ES, EBP, and ESP. All
other registers can be destroyed. Notice the inclusion of the ES register. TMT Pascal always
assumes that ESiis equal to DS.

Do not change segment, page, and interrupt tables, as well as the control, debug and test
registers, unless you are thoroughly familiar with 386 protected mode architecture. Privileged
instructionslike LGDT and LIDT are supported by built-in assembler. However, avoid using
them unless you know exactly what you are doing.

51

52

Programmer’s Reference

Code Procedure

Besides the assembler-routine you can use the code-routine. It has the following differences:
the compiler doesn’t emit the frame command on enter and return from the routine (including
the ret command), and the local parameters are based on ESP at the moment of entry.

Example:
function hi (n: word); code;
asm
mov al, byte ptr [n+1]
ret
end;

Command Syntax

The general syntax of an assembler statement is

[1abel:]
[prefixes]
[[opcode [operandl [, operand2 [, operand3]]]]

Here:

label: isan optional label definition;

prefixes are instruction prefixes;

opcodeis ainstruction mnemonic or directive;
operand is an operand expression.

Assembler Labels

The built-in assembler allows two types of labels:

e Global labels are declared inside a Pascal program within label declarations. Global 1abels
areidentical to Pascal |abels.

e Local labels are not declared. They must start with the @ symbol and contain letters,
digits, or underscore characters. Local labels are visible only within the current asm
statement.

Labels can be used with any assembler statements. More than one label can be used, if

needed. Labels are always optional.

Assembler Prefixes

Prefixes are modifiers for the following instruction. TMT Pascal allows the following prefix
mnemonics.

* SEGCS Override the operand' s segnent with CS:
* SEGDS Override the operand' s segnent with DS:
* SEGES Override the operand' s segnment with ES:
* SEGFS Override the operand' s segnment with FS:
* SEGGS Override the operand' s segnment with GS:
* SEGSS Override the operand' s segnent with SS:
* LOCK Lock the bus

* REP Repeat the instruction

* REPE and REPZ Repeat while equal

*

REPNE and REPNZ Repeat while not equal

TMT PASCAL

Developer Guide

Assembler Opcodes

The opcodes are either instruction mnemonics or assembly directives. The list of supported
instruction opcodes is given below. The only assembly directivesthat are allowed in TMT
Pascal are DB, DW, and DD.

Example:

asm
DB 'a','b','c
DB ' This code was copyri ghted by GhueWare'
DW 1, 2,4, 8, 16, $20, 40h
DD O fset HeaplLo

end;

The DB, DW, and DD directives allow a variable number of arguments, separated by
commas. The other commonly used assembly directives can be emulated with Pascal

statements. For instance, the EQU directive is emulated with const, while STRUCTSs can be
defined with the type recor d declaration.

Assembler Registers

The following registers can appear in built-in assembler:

8-bit: AL BL CL DL AH BH CH DH
16-bit: AX BX CX DX SI DI BP SP

32-hbit: EAX EBX ECX EDX ESI EDI EBP ESP
Segnent : CS DS ES SS FS GS

8087: ST

Control : CRn

Debug: DRn

Test : TRn

The segment register can be used for segment overrides. 32-bit registers can be used for
indexing following the standard 80386 conventions. 16-bit registers should never be used for
addressing, unless your entire program does not exceed 64K. Even then, addressing with 16-
bit registersisinefficient. Generally, an addressis formed as

Base + Index * Scal e + Di spl acenent

where Baseis any of the 32-bit registers, Index is any 32-bit register but not ESP, and Scale
should be 1,2,4, or 8. Finally, the Displacement is a 32-bit integer quantity.

Here are some valid and invalid indexing modes:

[EAX+EBX] ; ok
[EAX+EAX] ; ok, EAX is both base and index.
[ESP]; ok, ESP is index, no base.
[EDX*2]; ok, use this to index a global array of words.
[EAX*4+EBP]; ok, use this to index a local array of longints.
[SI]; ok, but is likely to lead to hard-to-find bugs.

[ESI+BX]; illegal, mix of 16- and 32- bit registers.
[SI*4]; illegal, 16-bit regi sters cannot be scal ed.
[ESP*4]; illegal, ESP cannot be an index.

Please consult Intel ™ 80386/80486 Programmer’s reference for more details.

53

54

Programmer’s Reference

Assembler Opcode Mnemonics

This section lists valid opcode mnemonics. Please consult an 80386 reference book for
additional details. Thelist uses the following abbreviations:

* acc - accunul ator register (AL, AX, EAX)
* brm - byte register or nenory operand
* cdt - control, debug or test register
*imm - byte
* label - offset in code
* mem - menory operand
* none - no operands
* reg - register
* rm - register or nenory operand
* seg - segnment register
* st - coprocessor top of stack register
* st(i) - coprocessor register
Opcode: Possi bl e argunent s
AAA: none
AAD: none
AAM none
AAS: none
ADC: rmreg | reg,rm| rmimm
ADD: rmreg | reg,rm| rmimm
AND: rmreg | reg,rm| rminmm
ARPL: rmreg
BOUND: reg, mem
BSF: reg,rm
BSR: reg,rm
BTC. rmreg | rminmm
BTR: rmreg | rminmm
BTS: rmreg |[rminmm
BT: rmreg | rminmm
CALL: | abel | rm
CBW none
CDQ none
CLC none
CLD: none
CLI: none
CLTS: none
CcMC: none
CWVP: rmreg | reg,rm| rminmm
CVPSB: none
CVPSD: none
CVPSW none
CPUI Dt none
QWD: none
CWDE: none
DAA: none
DAS: none
DEC: rm
Dl V: rm
ENTER: i mminm
F2XML: none
FABS: none
FADD: none | st,st(i) | st(i),st | nmem
FADDP:; st(i), st

FBLD: mem

FBSTP:
FCHS:
FCLEX:
FCOMm
FCOWVP:
FCOWPP:
FDECSTP:
FDI SI :
FDI V:
FDI VP:
FDI VR:
FDI VRP:
FENI :
FFREE:
FI ADD:
FI COVP:
FI COuvt
FI DI VR:
FI DI V:
FI LD:
FI MUL:
FI MJL:
FI NCSTP:
FI N T:
FI ST:

FI STP:
FI SUB:
FI SUBR:
FLD:
FLD1:
FLDCW
FLDENV:
FLDL2E:
FLDL2T:
FLDLG2:
FLDLNZ2:
FLDPI :
FLDZ:
FMUL:
FMULP:
FNCLEX:
FNDI Sl :
FNENI :
FNI NI T:
FNOP:
FNSAVE:
FNSTCW
FNSTENV:
FNSTSW
FPATAN:
FPREM
FPREML :
FPTAN:
FRNDI NT:
FRSTOR:
FSAVE:
FSCALE:
FSETPM

FSQRT:

nmem

none
none
none
none
none
none
none
none

st,st(i)

st(i), st
st (i), st
st (i), st

none
st(i)
mem
mem
mem
mem
mem
mem
mem
mem
mem
none
mem
mem
mem
mem
st(i)
none
mem
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
mem
mem
none
none
none

nmem

st,st(i)
st (i), st

st (i), st

st(i), st

nmem

nmem

TMT PASCAL

Developer Guide

55

56

Programmer’s Reference

FST:
FSTP:
FSTCW
FSTENV:
FSTSW
FSUB:
FSUBP:
FSUBR:
FSUBRP:
FTST:
FWAI T:
FXAM
FXCH:
FXTRACT:
FYL2XP1:
FYL2X:
HLT:

I DI V:
| MUL:
I N:

I NC:

| NSB:
| NSD:
I NSW
| NT:

I NTG
| RETD:
| RET:
JA:
JAE:
JB:
JBE:
JC.
JCXZ:
JE:
JECXZ:
JG
JGE:
JL:
JLE:
JMP:
JNA:
JNAE:
JNB:
JNBE:
JNC:
JNE:
JNG
JINGE:
JNL:
JNLE:
JNG
JNP:
JNS:
JINZ:
JO
JP:
JPE:
JPC
JS:

st (i)
st (i)
mem

nmem

mem |
none |
none |
none |
none |
none
none
none
none
none
none
none
none
rm

rm |

acc, i mm |

rm
none
none
none
i mm

none
none
none
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel
| abel

reg,inmm |

AX

st,st(i)
st(i)st
st,st(i)
st(i), st

acc, DX

rm

st(i), st

st(i), st

reg,rminmm

nmem

nmem

TMT PASCAL | 57

Developer Guide

JZ: | abel
LAHF: none
LAR: reg,rm
LDS: reg, mem
LEAVE: none
LEA: reg, mem
LES: reg, mem
LFS: reg, mem
LGDT: mem
LGS: reg, mem
LI DT: mem
LLDT: rm
LMW rm
LODSB: none
LODSD: none
LODSW rm
L OOP: | abe
LOOP16: | abel
LOOP32: | abel
LOOPE: | abe
L OOPNE: | abe
LOOPNZ: | abe
LOOPZ: | abe
LSL: reg,rm
LSS: reg, mem
LTR: reg, mem
MOV: reg,rmfrmreg|rminnrmseg|seg, rmreg, cdt|cdt,reg
MOVSB: none
MOVSD: none
MOVSW none
MOVSX: reg,rm
MOVZX: reg,rm
MUL: rm
NEG. rm
NOP: none
NOT: rm
OR: none
QUT: i M acc | DX, acc
QUTSB: none
QUTSD: none
OQUTSW none
POP: rm
POPA: none
POPAD: none
POPF: none
POPFD: none
PUSH: rm
PUSHA: none
PUSHAD: none
PUSHF: none
PUSHFD: none
RCL: rm1l| rmCL | rmimm
RCR: rm1l1 | rmCL | rmimm
RET: none, i MM
RETF: none, i MM
RETN: none, i MM
ROL: rm1l| rmCL | rmimm
ROR: rm1l | rmCL | rmimm

SAHF: none

58

Programmer’s Reference

SAL: rm1l1 | rmCL | rminmm
SAR: rm1l1 | rmCL | rminmm
SBB: rmreg | reg,rm| rminmm
SCASB: none
SCASD: none
SCASW none
SEGCS: none
SEGDS: none
SEGES: none
SEGSS: none
SEGFS: none
SEGGS: none
SETA: brm
SETAE: brm
SETB: brm
SETBE: brm
SETC: brm
SETE: brm
SETGE: brm
SETG brm
SETL: brm
SETLE: brm
SETNA: brm
SETNAE: brm
SETNBE: brm
SETNB: brm
SETNC: brm
SETNE: brm
SETNGE: brm
SETNG brm
SETNLE: brm
SETNL: brm
SETNG brm
SETNP: brm
SETNS: brm
SETNZ: brm
SETO brm
SETPE: brm
SETPO brm
SETP: brm
SETS: brm
SETZ: brm
SGDT: mem
SHLD: rmreg,inmm
SHL: rm1 | rmCL | rmimm
SHRD: rmreg,inmm
SHR: rm1l1 | rmCL | rminmm
S| DT: mem
SLDT: rm
S\VEW rm
STC: none
STD: none
STl : none
STOSB: none
STOSD: none
STOSW none
STR: rm
SUB: rmreg | reg,rm| rminmm
TEST: rmreg | reg,rm| rminmm

VERR: rm

TMT PASCAL | 59

Developer Guide

VERW rm

VA T: none

XCHG reg,rm| rmreg

XLAT: none

XOR: rmreg | reg,rm| rmimm

Assembler Operand Expressions

Operand expressions are built from operands and operators. Operands are constants, registers,
labels, and memory locations. Operators combine operands and alter their attributes. Each
instruction allows only certain combinations of operands.

Operand expressions can be classified into three classes:

* Immediate operands or constants.
* Regigters.
* Memory and label operands.

Immediate operands

PUSH 10

MOV AX 10

MOV AX, offset Start

Here 10, and Star’ are immediate operands. The values of A and 10 can be determined
immediately; the value of offset Sart is determined during linking.

Registers

TMT Pascal built-in assembler allows use of any 8, 16, or 32-bit 80386 registers.
XOR AH, AL
LSL EAX, EAX
MOV AX, FX

Memory and label operands

Memory operands refer to the data stored in memory locations. Usually, one uses square
brackets[..] or the type ptr operator to ensure that the argument is treated as a memory
location. Label operands refer to locations in code.

MOV EBX, [0]

PCOP Word Ptr [88]

POP VWwrd Ptr 88 // sane as above
J\VP @xit

LOOP16 @ oop
Memory and immediate operands can be either absolute or relocatable. An operand is absolute
if its value or offset is entirely known during compilation. An operand isrelocatable if its
offset will become known only during linking.

Assembler Operands

TMT Pascal allows the following operands. Numeric Constants, Strings, Registers, Pascal
Symbols and Special Assembler Symbols.

Numeric Constants

Numeric constants are 32-bit integers, e.g. integersin the range -2147483648..4294967295.
Numeric constants can be entered as decimal numbers, binary numbers (using the ‘B’ suffix),

60

Programmer’s Reference

octal numbers (using the ‘O’ or ‘Q’ suffix) or hexadecima numbers (using the ‘H’ suffix or
‘$ prefix). Note that the hexadecimal numbers must start with a digit.

Strings

Strings are enclosed in either single or double quotes. A repeated quote of the same type as
the surrounding quotesis treated as one character. String constants of arbitrary length may
occur only inthe ‘DB’ directive. In all other cases, the string must not exceed four characters
and its valueis converted into an integer number.

Registers
The use of registers was described above.

Pascal Symbols

With built-in assembler you can access the majority of Pascal symbols. These include labels,
constants, variables, types, and procedures. The values, classes and types of Pascal symbols
are summarized in the table below:

Synbol Val ue Cl ass Type 0
| abel its address Menory NEAR

const ant its val ue I mediate 0

type 0 Menory si zeof (type)
field its offset Menory si zeof (type)
vari abl e its address Menory si zeof (type)
procedure its address Menory NEAR

function its address Menory NEAR

unit its address Imediate O

Special Assembler Symbols

Built-in assembler supports five special symbols: @CODE, @DATA, @RESULT,
@PARAMS and @LOCALS. The @CODE and @DATA are not really useful in aflat
model. They always return OCh and 14h, which are the standard segment selectors for the
code and data segments. The @RESULT symbol points to the pseudo-variable that contains
the function return, @PARAMS and @L OCAL Sreturn the size of the parameter and local
areas on stack.

Assembler Operators

TMT Pascal built-in assembler syntax allows the a number of operators, listed below:

& Identifier override operator. The following identifier is
considered to be a user defined symbol, even if its
spelling is identical to an assembler reserved word.

() Parenthesis. Expressions within parenthesis are
evaluated first.

[Memory reference. The expression within brackets is

evaluated first. This expression should be a valid 386

address. The resulting expression is always treated as a

memory reference.

High and Low byte selection. These operators return the

high and low 8 bits of the word-size expression that

follows.

+, - Unary plus and minus operators. The expression should

be an absolute immediate.

HIGH, LOW

SMALL, Forces the built-in assembler to treat the following
LARGE operands as a 16- or 32- bit quantity.
OFFSET Returns the 32-bit offset of the expression that follows.
SEG Returns the segment part of the operand.
TYPE Returns the type of the operand. The type of a NEAR

symbol is -1, of a FAR symbol is -2. The type of a memory

TMT PASCAL

Developer Guide

operand is its size. The type of an immediate symbol is 0.
PTR Typecasts the following expression into the type symbol
that precedes the PRT operator. Valid typecasts are
BYTE PRT, WORD PRT, DWORD PRT, FWORD PRT,
TBYTE PRT, QWORD PRT, NEAR PRT, and FAR PRT.
* Multiplication. Both arguments must be absolute
immediate quantities, or one of the arguments should be
an index register and the other a scale factor (1,2,4, or 8).
/ Division. Both arguments must be absolute immediate
quantities.
MOD Integer remainder after division. Both arguments must be
absolute immediate quantities.
SHL, SHR Left and right shifts. Both arguments must be absolute
immediate quantities.
+, - Addition and Subtraction. At most one argument can be a
relocatable value and it cannot be the argument that is
being subtracted. The other argument must be an
absolute immediate quantity.
NOT Binary complement. The argument must be an absolute
immediate quantity.
AND Bitwise AND. The arguments must be absolute immediate
quantities.
OR Bitwise OR. The arguments must be absolute immediate
quantities.
XOR Bitwise exclusive OR. The arguments must be absolute
immediate quantities.

Assembler Operator Precedence

The precedence of these operators is shown in the following table (from the highest
precedence to the lowest):

Operator Coment s

& Identifier override

O [1 Sub-expressions, memory reference,
structure member

H GH LOW High and low bytes selectors

LARGE SMALL 32- and 16- bit operation overrides

+ - Unary operators

: Segment override
OFFSET SEG TYPE

PTR */ MOD SHL SHR

+ - Binary operators
NOT AND OR XOR Bitwise operators

Differences between 16- and 32-bit code

While this manual does not really teach 32-bit assembly programming, we will list here
several considerations important in 32-bit assembler programming. These considerations may
be helpful to a 16-bit programmer entering the 32-bit arena.

Avoid using 16-bit registersfor indexing
The built-in assembler will correctly assemble instructions like

61

62

Programmer’s Reference

MOV BX, of fset table
MOV AX, t abl e[BX]
JWP t abl e[BX]

However, these instructions will not work correctly if the size of your program exceeds 64K
and the ‘table’ variable is placed after the 64K limit. Thisis because 16-bit addresses span
only the 64K of the segment. The last example above is the most dangerous; it islikely to
crash the system.

Jump tables
Jump tables should be built as tables of 32-bit addresses, not 16-bit addresses.

Longint (32-bit) Arithmetic
Try to use longint arithmetic as much as possible. 16-bit instructions often take more space
than corresponding 32-bit instructions. In

XOR AX, AX

MoV datal, AX

MoV data2, AX
it would be better to replace the first instruction with
XOR EAX, EAX

which is one byte shorter. Furthermore, if datal and data2 can be changed into longints, you
may save alot more space (and time) both in the assembler and the Pascal sections of the
program.

ECX vsCX
Loop and repeat instructions in 32-bit mode use the ECX register rather than CX. The
following program segment islikely to cause problems:

MoV CX, size
MoV ESI, source
MoV EDI, dest
REP MOVSB
Also notice that the source and destination registers are ESI and EDI, rather than S| and DI.

POPAD/PUSHAD

Use POPAD and PUSHAD instead of POPA and PUSHA.. The latter instructions generate
only 16-bit pushes.

POPFD/PUSHFD

Use POPFD and PUSHFD instead of POPF and PUSHF. The latter instructions generate only
16-bit pushes.

IRETD

Use‘'IRETD’ instead of ‘'IRET’. The latter instruction pops 16-bit registers.

String instructions

When doing string operations, it is better to use double word instructions instead of byte or
word. Use MOV SD instead of MOV SW or MOV SB.

JECXZ vsJCXZ

Distinguish between the JCXZ and JECXZ instructions. The former tests the CX register,
while the latter tests ECX. Use of JCXZ instead of JECXZ may lead to hard-to-find bugs.
Similarly, LOOP tests ECX, while LOOP16 tests CX.

Function results
Remember to return 32-bit resultsin EAX, not DX:AX.

ES: preservations
Do not change the ES register. TMT Pascal dependson ES =DS.

TMT PASCAL | 63

Developer Guide

Immediate PUSH

TMT Pascal assumes that an immediate push instruction like
PUSH Small O
PUSH Smal | offset data
Furthermore notice that like TASM and unlike the PharLap assembler, TMT Pascal will treat

PUSH Wrd Ptr O
asif it were
PUSH Word Ptr [O]

Var Parameters

Similar to 16-bit mode, Var parameters are 32-bit pointers. However, in TMT Pascal, pointers
are just 32-hit offsets within the data segment. Therefore, Var parameters are retrieved with a
‘MOV’ instruction, not with an LES or an LDS.

Local Symbols
Local Symbols and Parameters are addressed via the EBP register. For example, in

var | ocal: Longint;
asm

MOV EAX, | ocal
end;

the last line assembles into
MOV EAX, [EBP-4]

1.15 Standard Units

TMT Pascal comes with a set of standard units (see UNITS.PDF for more info).
It isalso possible to create units. For example, in writing a
large program it might become desirable to group display routines or user
input routines. This allows for greater organization while programming. For
more information on creating your own units see the Programs and Units
chapter.

64

Programmer’s Reference

Chapter 2

Win32 Programming

2.1 Writting Win32 GUI Applications

TMT Pascal produces native Win32® GUI applications. This chapter is based on the
Microsoft® Win32® Programmer’s Reference and describes particularities of GUI

application development using the TMT Pascal Multi-target. The TMT Pascal compiler comes
with a set of units which define function and procedure headers for the Windows API.

For more information refer to Microsoft Win32 Programmer’s Reference and M icr osoft
M ultimedia Programmer’s Reference. Also, you will find sources of all Win32 API
interface unitsin the \TM TPL\SOURCE\WIN32 subdirectory.

Every graphical Win32-based application creates at least one window (called the main
window) that serves as the main window for the application. This window serves asthe
primary interface between the user and the application. Most applications also create other
windows, either directly or indirectly, to perform tasks related to the main window. Each
window plays a part in displaying output and receiving input from the user.

At the start of an application, the system associates a taskbar button with the application. The
taskbar button contains the program icon and the title. When the application is active, its
taskbar button is displayed in the pushed state.

2.2 Structure of Window Procedure

A window procedure is afunction that has four parameters and returns a 32-bit signed value
(Longint). The parameters consist of a window handle, a UINT message identifier, and two
message parameters declared with the WParam and L Param data types. For more information,
see WindowProc.

M essage parameters often contain information in both their low-order and high-order words.
The Microsoft® Win32® application programming interface (API) includes several macros
an application can use to extract information from the message parameters. The LOWORD
function, for example, extracts the low-order word (bits 0 through 15) from a message
parameter. Other functions include HIWORD, LOBYTE, and HIBYTE.

The interpretation of the return value depends on the particular message. Consult the
description of each message to determine the appropriate return value.

Becauseit is possible to call awindow procedure recursively, it isimportant to minimize the
number of local variablesthat it uses. When processing individual messages, an application
should call functions outside the window procedure to avoid excessive use of local variables,
possibly causing the stack to overflow during deep recursion.

TMT PASCAL

Developer Guide

2.3 Designing a Window Procedure

The following example shows the structure of a typical window procedure. The window
procedure uses the message argument in a CASE statement to process. For messages that it
does not process, the window procedure calls the DefWindowProc function.

function Mai nWwhdProc conv arg_stdcal | (
_hwnd: HWAD, /1 handl e of wi ndow
_uMsg: UINT, /1 nmessage identifier
_wParam WPARAM /1 first message paraneter
_| Param LPARAM /1 second nmessage paraneter
): LRESULT;
begi n
case _uMsg of
WM _CREATE:
begi n
/1 Initialize the wi ndow.
Result := 0;
end;

VWM _PAI NT:
begi n
/] Paint the window s client area.
Result := O;
end;

WV _SI ZE:
begi n
/1 Set the size and position of the w ndow.
Result := O;
end;

WV_DESTROY:
begi n
/1 Clean up wi ndow specific data objects.
Result := 0;
end;
/1
/1 Process other messages.
/

el se
Result := Def WndowProc(_hwnd, _uMsg, _wParam
_| Param ;
end;
end;

2.4 Associating a Window Procedurewith a Window Class

One associates a window procedure with a window class when registering the class. You
must fill a TWndClass structure with information about the class, and the IpfnwndProc
member must specify the address of the window procedure. To register the class, passthe
address of TWndClass structure to the Register Class function. Once the window classis
registered, the window procedure is automatically associated with each new window created
with that class.

65

66

Programmer’s Reference

The following example shows how to associate the window procedure in the previous
example with awindow class:

var
we: TWhdd ass;
begin
/'l Register the main wi ndow cl ass.
with we do begin
style : = CS_HREDRAW or CS_VREDRAW
| pf nWAdProc : = @ai nWhdPr oc;

chd sExtra : = 0;
cbWidExtra : = 0;
hl nst ance : = System hl nst ance;

hl con : = Loadl con(THandl e(NI L), |DI _APPLI CATI ON);
hCursor := LoadCursor(THandl e(NIL), |1DC ARROW ;
hbr Backgr ound : = Get St ockObj ect (VWH TE_BRUSH) ;
| pszMenuNane : = ' MainMenu';
| pszd assNane : = ' Mai nW ndowC ass' ;

end;
if not Registerd ass(we) then MyError;

/11
/'l Process other nessages.
/1

end.

2.5 Example of aWin32 GUI Application

program Hel | ow;

{$i fndef __WN32__}
{$define | NVALI D_TARGET}
{$endi f}
{$ifndef QU _}
{$define | NVALI D_TARGET}
{$endi f}
{$i fdef | NVALI D_TARGET}
This program nmust be conpiled for Wn32 GUI target only
{$endi f}

uses W ndows, MvBystem Messages;

functi on MyYWhdProc conv arg_stdcall (W ndow. HWD; Mess: Ul NT;
Wp: WParam Lp: LParam): LRESULT;

begin
case Mess of
WM _PAI NT: begin

decl are

var
DC. hDC;
ps: TPaint Struct;

begin

DC : = Begi nPai nt (W ndow, ps);
TextQut (DC, 0, O, '"Hello World!', 12);
EndPai nt (W ndow, ps);
Result := 0;
end;
end;

VWM DESTROY: begi n
Post Qui t Message(0) ;
Result := 0;
end;

VWM _LBUTTONDOWN: begi n

TMT PASCAL

Developer Guide

MessageBox(W ndow, 'This is ny nessage!',

"My nessage box', MB (K);
Result := O;
end;
el se

Result := Def WndowPr oc(W ndow, Mess, W,

Lp);
end;
end;

var
we : Twhdd ass;
wnd: HWhd;
Msg: TMsg;
begi n
Fill Char(wc, SizeO (wc), 0);
with wec do begin
styl e: =CS_HREDRAW + CS_VREDRAW
| pf nVhdProc : = @&WhdProc;

cbC sExtra : = 0O;
cbWhdExtra : = 0;
hl nst ance : = System hl nst ance;

hl con : = Loadl con(THandl e(NI L), 1Dl _APPLI CATI ON);
hCur sor := LoadCursor(THandl e(NI L), |DC _ARROW ;

hbr BackGround : = COLOR_W NDOM1;
| pszMenuNane : = nil;

| pszCl assNanme := 'HelloWrld';
end;
if RegisterCass(wc) = 0 then
begi n

Exit;
end;

wnd : = Creat eWndow(wc. | pszCl assNane, ' GUJl Applicati on Denmo',
WS5_OVERLAPPEDW NDOW CW USEDEFAULT, 0, CW USEDEFAULT, 0, 0, O,

Hl nstance, NIL);

ShowW ndow(wnd, SW RESTORE) ;
Updat eW ndow(wnd) ;

whi | e Get Message(Msg, 0,0,0) do
begi n

Transl at eMessage(MsQ) ;

Di spat chMessage(MsQ) ;
end;

end.

2.6 Writting Win32 Control Pand Applications

Even though Windows provides a number of standard Control Panel applications (CPL),
one can create additional applications with TMT Pascal to let users examine and modify the

settings and operational modes of specific hardware and software.

67

68

Programmer’s Reference

2.7 Application Responsibilitiesand Operation

The primary responsibility of any Control Panel application isto display adialog box and to
carry out any tasks specified by the user. Despite this responsibility, Control Panel
applications do not provide menus or other direct means for users to access their dialog boxes.
Instead, these applications operate under the control of another application and display their
dialog boxes only when requested by the controlling application.

Control Panel applications are usually controlled by a Windows system utility specifically
designed to give users access to these applications. However, any application can load and
manage Control Panel applications, as long as the controlling application sends messages and
processes return values in the way that the Control Panel applications expect.

Most Control Panel applications display and manage a single dialog box, giving the user
control of the settings and operational modes of a single system component. However, any
given Control Panel application can provide any number of dialog boxesto control any
number of system components. (These individual dialog boxes are sometimes called applets.)
To distinguish between dialog boxes, a Control Panel application typically suppliesthe
controlling application with a unique icon for each dialog box. The controlling application
displays these icons and the user can choose a dialog box by choosing the corresponding icon.

2.8 Application Entry-Point Function

Every Control Panel application must export the standard entry-point function, CPIApplet.
This function receives requests, in the form of Control Panel (CPL) messages, and carries out
the requested work, such as initializing the application, displaying and managing the dialog
box(es), and closing the application.

When the controlling application first loads the Control Panel application, it retrieves the
address of the CPIApplet function and subsequently uses the address to call the function and
pass it messages. The controlling application may send the following messages:

CPL_DBLCLK

Sent to notify CPIApplet that the user has chosen the icon associated with a given dialog box.
CPIApplet should display the corresponding dialog box and carry out any user-specified
tasks.

CPL_EXIT

Sent after the last CPL_ST OP message and immediately before the controlling application
uses the FreeL ibrary function to free the DLL containing the Control Panel application.
CPIApplet should free any remaining memory and prepare to close.

CPL_GETCOUNT

Sent after the CPL_GETCOUNT message to prompt CPIApplet to return a number
indicating how many dialog boxesit supports.

CPL_INIT

Sent immediately after the DLL containing the Control Panel application isloaded, to prompt
CPIApplet to perform initialization procedures, including memory allocation.

TMT PASCAL

Developer Guide

CPL_INQUIRE

Sent after the CPL_GETCOUNT message, to prompt CPIApplet to provide information
about a specified dialog box. The |Param2 parameter of CPIApplet pointsto a TCPLInfo
structure.

CPL_NEWINQUIRE

Sent after the CPL_GETCOUNT message, to prompt CPIApplet to provide information
about a specified dialog box. The |Param2 parameter is a pointer to a TNewCPLInfo structure.
For better performance on Windows 95 and Windows NT version 4.0, your application should
process CPL_INQUIRE and not CPL_NEWINQUIRE.

CPL_SELECT
This message is obsolete. Current versions of Windows do not send this message.

CPL_STOP

Sent once for each dialog box before the controlling application closes. CPIApplet should
free any memory associated with the given dialog box.

You will find an example of Control Panel Applicationin/TMTPL/SAMPLESWIN32/CPL
subdirectory.

69

70

Programmer’s Reference

Appendix A

Compiler Directives

Compiler directives, are comments started with the $ symbol. Compiler directives can be used
wherever comments are allowed.

Compiler directives

- beginwith {$, *$or (*$

- arefollowed by the name of the directive
- endwith}, */ or *)

Note that // and -- comments can not be used to specify compiler directive

Compiler directives comein three varieties:

Switch directives turn compiler features on or switches off when + or - are specified after the
directive name.

Parameter directives specify parameters that affect the compilation.

Conditional directives control conditional compilation of parts of the source text.

A.1 Conditional directives

Targets: MSDOS, 052, Win32

Conditional compilation is based on the evaluation of conditional symbols.

$DEFINE Defines a conditional symbol

$ELSE Compiles or ignores a portion of source text

$ENDIF Ends the conditional compilation

$IFDEF Compiles source text if Name is defined

$IFNDEF Compiles source text if Name is NOT defined

$IFOPT Compiles source text if acompiler switch isin a specifies state(+ or -)
$UNDEF Undefines a previously defined conditional symbol

A.2 Switch and Parameter Directives

Targets: MSDOS, 052, Win32

$A: Data Align Switch
Switches on/off word-alignment of variables and typed constants

Syntax:
{$A+} or {$A-}

TMT PASCAL

Developer Guide

Default:
{ At}

Remarks:

The data align switch has no affect on structures and objects alignment. Use $OA compiler
directive to switch on/off structures and objects alignment.

$AC: Ada-Style Comments Switch
Switches on/off Ada-style comments recognition.

Syntax:

{SAC+} or {$AC}
Default:

{AC}

Remarks:
Keep in mind that Ada-style comments are not longer supported by default.

$AMD: AMD 3DNow! Assembler Instructions Switch
Enables/disables AMD 3DNow! instructions support in built-in assembler.

Syntax:
{SAMD+} or {$AMD-}

Default:
{ AND+}

$B: Boolean Evaluation Switch

Switches on/off the two different models of code generation for the AND and OR Boolean
operators.

Syntax:
{$B+} or {$B-}

Default:
{$B-}

Remarks:

If { $B+} defined, the compiler generates code for complete boolean expression eval uation.
|.e. every operand of a boolean expression built from the AND and OR operatorsis
guaranteed to be evaluated, even when the result of the entire expression is already known.

If { $B-} defined, the compiler generates code for short-circuit bool ean-expression
evaluation. |.e. evaluation stops as soon as the result of the entire expression becomes evident.

$CC: C/C++ Style Comments Switch

Switches on/off C/C++ style comments recognition.

Syntax:
{$CC+} or {$CC}

71

72

Programmer’s Reference

Default:
{ CC+}

$D: Debug Information Switch
Switches on/off the generation of debug information.

Syntax:
{$D+} or {$D-}

Default:
{ $D+}

Remarks:

Debug information consists of aline-number table for each procedure. The table maps object-
code addresses into source-text line numbers.

If { $D+} isdefined, you can use the built-in Debugger to single-step, step over and set
breakpointsin a module.

Debug information increases the size of unit files and increases memory usage when you
compile programs that use the unit.

The Debug Information switch is usually used with the Local Symbols switch.
Seealso: $L: Local Symbol Information Switch.

$l: 1/0-Checking Switch

Enables or disables the automatic code generation that checks the result of acall to an 1/0
procedure.

Syntax:
{$I+} or {$I-}

Default:
{$1+}

Remarks:

If an 1/0O procedure returns a non-zero 1/0 result when the $I switch is on, the program
terminates, displaying a run-time error message.

When the $I switch is off, you should use the |OResult function to check for I/O errors.

$Include File Directive
Instructs the compiler to include the named file in the compilation.

Syntax:
{$l Fil eNane}

Remarks:
Theincluded fileisinserted in the compiled text right after the {$l Fi | eNane} directive.

$L: Link Object File Directive
Instructs the compiler to link the named file with the program or unit being compiled.

TMT PASCAL

Developer Guide

Syntax:
{$L Fil eNane}

Remarks:

The{$L Fi | eNane} directiveisused to link with code written in assembly language for
sub-programs which are declared to be external.

The named file must be an Intel relocatable object file (.OBJfile).

See dso: External Declar ation

$L: Local Symbol Information Switch
Enables or disables the generation of local symbol information.

Syntax:

{$L+} or {$L-}
Default:

{$L+}

Remarks:

Local symbol information consists of the symbols in the modul€e’ s implementation part
(names and types of al local variables and constants in a module), and the symbols within the
modul€e’s procedures and functions.

$MAP: Map File Generation Switch
Switches on/off warnings generation.

Syntax:
{ SVAP+} or {$MAP-}

Default:
{ MAP- }

Remarks:
If {$MAP+} defined, TMT Pascal will generate a map file.

$MMX: Intel MMX Assembler Instructions Switch
Enables/disables Intel MM X instructions support in built-in assembler.

Syntax:
{$SMWX+} or {$SMWX-}

Default:
{ MVX+}

$OA: Objects and Structures Align Switch

Switches on/off word-alignment of objects and structures.

Syntax:
{$0A+} or {$QA-}

Default:
{ OA-}

73

74

Programmer’s Reference

Remark:

The data align switch has no affect on variables and typed constants alignment. Use $A
compiler directive to switch on/off variables and typed constants alignment.

$OPT: Full Optimization Switch
Switches on/off full optimization ({ OPTREG+} & { OPTFRM+}).

Syntax:
{$OPT+} or {$OPT-}

Default:
{ OPT+}

$OPTFRM: Stack Frame Optimization Switch
Switches on/off stack frame optimization.

Syntax:
{$OPTFRMt+} or {$OPTFRM }

Default:
{ OPTFRMW+}

$OPTREG: Register Optimization Switch
Switches on/off register optimization.

Syntax:
{$OPTREG+} or {$OPTREG }

Default:
{ OPTREG+}

$P: Open String Parameters Switch
Controls the meaning of variable parameters declared using the string keyword.

Syntax:

{$P+} or {$P-}
Default:

{ $P+}

Remarks:

If { $P-} defined, variable parameters declared using the string keyword are normal variable
parameters.

If { $P+} defined, variable parameters declared using the string keyword are open string
parameters.

$Q: Overflow Checking Switch
Controls the generation of overflow checking code.

Syntax:
{$Q+} or {$Q}

TMT PASCAL | 75

Developer Guide

Default:
{$Q}
Remarks:
The $Q switch is usually used in conjunction with the $R switch.

Enabling overflow checking slows down your program and makes it larger. We recommend to
use { $Q+} only for debugging purposes.

$R: Range-Checking Switch
Enables and disables the generation of range-checking code.

Syntax:
{$R+} or {$R-}

Default:
{$R-}

Remarks:
The $R switch is usually used in conjunction with the $Q switch.

If { SR+} defined, all array and string-indexing expressions are verified as being within the
defined bounds all assignments to scalar and subrange variables are checked to be within
range.

If arange-check fails, the program terminates and displays a run-time error message.

Enabling range-checking slows down your program and makesit larger. We recommend to
use{ $R+} only for debugging purposes.

Keep in mind that range-checking mode affects even on «+», «* » and Shl operators.

$R: Resource File

Targets: 052, Win32

Specifies the name of aresource file to be included in an application or library. The named
file must be valid resource file (Windows 32-bit or OS/2 format) and the default extension for
filenamesis.RES.

Syntax:
{$R fil enane. RES}

Remarks:

When a{$R filename} directive isused in a unit, the specified file nameis simply recorded in
the resulting unit file. No checks are made at that point to ensure that the filename is correct
and that it specifies an existing file.

Win32 target:
The old 16-bit Windows resource format is not allowed.

$S: Stack-Overflow Checking Switch

Enables and disables the generation of stack-overflow checking code.

Syntax:
{$S+} or {$S-}

76

Programmer’s Reference

Default:
{$S-}

Remarks:

If { $S+} isdefined, the compiler generates code at the beginning of each procedure or
function to check whether there is sufficient stack space for the local variables and other
temporary storage.

Important! Thisoption isnot supported by the current version of the compiler and will
beignored.

$T: Type-Checked Pointers Switch
Controls the types of pointer values generated by the @ operator.

Syntax:
{$T+} or {$T-}

Default:
{$T-}

Remarks:

If {$T-} isdefined, the resulting type of the @ operator is always an untyped pointer.
Otherwise the type of the result is”T, where T is compatible only with other pointers to the
type of the variable.

$TPO: Typed Inc/Dec Operations Switch
Enables/disables typed Inc/Dec operations on pointers.

Syntax:
{$TPO+} or {$TPO}

Default:
{$T+}
Example:
var
a: "DWORD;
begin
a := Pointer(0);
inc(a);
Witeln(Longint(a));
end.

The sample above prints 1 if typed operations are disabled ($TPO-}. If typed operations are
enabled ($TPO+}, the application prints 4.

$V: Var-String Checking Switch
Controls type-checking on strings passed as variable parameters.

Syntax:
{$V+} or {$V-}

Default:
{$Vv+}

TMT PASCAL

Developer Guide

Remark:

If { $V+} isdefined, strict type-checking is performed, requiring the formal and actual
parameters to be of identical string types. Otherwise any string-type variableis allowed as an
actual parameter, even if the declared maximum length is not the same as that of the formal
parameter.

$W: Warnings Generation Switch
Switches on/off warnings generation.

Syntax:
{$W} or {$W}

Default:
{ W}

Remark:
If {$W+} defined, TMT Pascal will show compilation warnings.

$X: Extended Syntax Switch
Enables or disables Turbo Pascal’ s extended syntax.

Syntax:
{$X+} or {$X-}

Default:
{ $X+}

Remarks:

If { $X+} isdefined, function calls can be used as statements. The result of a function call
can be discarded.

A.3 Predefined Symbols

Targets: MSDOS, 052, Win32

The following symbols are predefined:

MSDOS - for DOS target

__TMT__ - always

__ VER3__ - always for version 3.xx

__ MULTITARGET__ -awaysfor TMT Pascal multi-target
__DOS__ - for DOS target

__0s2 - for al OS2 targets

_ DLL__ - for OS/2 and Win32 DLL targets
_PM__ - for OS/2 Presentation manager targets
FS - for OS/2 Full Screen targets

_ WIN32__ - for all Win32 targets

__CON__ - for 0S/2, Win32 and MS-DOS console targets

_ GUIL__ - for Win32 GUI targets

77

78

Programmer’s Reference

Appendix B

Run-time Error Codes

The following error codes are predefined:

Code M eaning

1 Invaid function number

2 File not found

3 Path not found

4 Too many open files

5 File access denied

6 Invalid file handle

12 Invalid file access code

15 Invalid drive number

16 Cannot remove current directory
17 Cannot rename across drives
18 No more files

100 Disk read error

101 Disk write error

102 File not assigned

103 File not open

104 File not open for input

105 File not open for output

106 Invalid numeric format

150 Disk iswrite protected

151 Bad drive request structure length
152 Drive not ready

154 CRC error in data

156 Disk seek error

157 Unknown mediatype

158 Sector not found

159 Printer out of paper

160 Device write fault

161 Device read fault

162 Hardware failure

200 Division by zero

201 Range check error

202 Stack overflow error

203 Heap overflow error

204 Invalid pointer operation

205 Floating point overflow

206 Floating point underflow

207 Invalid floating point operation
208 Overlay manager not installed
209 Overlay fileread error

210 Object not initialized

211 Call to abstract method

212 Stream registration error

213 Collection index out of range

214
215
216
217
300
301
302
303
304
305
306
307
308
309

TMT PASCAL

Developer Guide

Collection overflow error
Arithmetic overflow error
General protection fault
Invalid operation code

File 10 error

Non-matched array bounds
Non-local procedure pointer
Procedure pointer out of scope
Function not implemented
Breakpoint error

Break by Ctrl/C

Break by Ctrl/Break

Break by other process

No floating point coprocessor

79

80

Programmer’s Reference

Appendix C

PMODE/W DOS Extender

TMT Pascal usesthe PMODEW v1.33 based extender. This chapter of the HELP file is based
on the original manual Copyright © 1994-1997, by Charles Scheffold and Thomas Pytel. All
rights reserved. All trademarks used in this documentation are property of their respective
owners.

C.1 About PMODE/W

PMODE/W alows DOS programsto runin full 32 bit protected mode, with accessto all
memory available in the system. PMODE/W basically extends the DOS environment to
protected mode and provides a simple interface to the real mode DOS system services for
your code. PMODE/W takes care of all aspects of running the system in protected mode and
maintaining compatibility with the underlying real mode software. PMODE/W deals with low
level necessities such as descriptor tables, memory management, |RQ and interrupt
redirection, real/protected mode translation functions, exception handling, and other
miscellaneous aspects of running in protected mode. Y our code does not need to deal with
specific aspects of different systems, such as XMSEMS/V CPI/DPMI availability.
PMODE/W will run on top of aimost any system and provide common protected mode
services to your program through the DPMI interface specification, as well as most standard
DOS functions extended for protected mode use.

PMODE/W isthe stub and extender in one. The generated executable contains the
PMODE/W extender within it as the stub. When run, PMODE/W will take care of setting up
the system and executing the protected mode portion of the program. Several years have gone
into the development of PMODE/W. It is now a fairly mature DOS extender, and has gone
through its fair share of bugs and incompatibilities. It is at this point, a very stable protected
mode system. Great pains have gone into the optimization and testing of PMODE/W. Our
major goals have been speed, size, and stability. We now feel that we have achieved a good
deal of those things. But don't take our word for it; try it yourself. Just plug PMODE/W into
any popular program which uses DOS/4GW.

Tosumit up, if you are looking for a good solid, stable, and fast extender, PMODE/W may be
just what you need.

Here are the advantages of PMODE/W:

No external extender required (everything needed to execute isin the EXE). Small size (less
than 12k for the entire extender program). Compression of protected mode executables. Low
extended memory overhead. Does not require ANY extended memory to load OR execute.
Fast execution.

Our major concerns in developing PMODE/W were speed, size, and stability. PMODE/W
itself was written entirely in assembly. When running under PMODE/W, your code will be
running at a privilege level of zero, the highest and fastest. PMODE/W does not virtualize
what it does not need to, and does not invoke any protected mode mechanism that is slow. For
example, if the systemis running clean or under XM'S, PMODE/W does not turn on paging.
Under a memory manager which provides both VCPI and DPMI services, PMODE/W will

TMT PASCAL

Developer Guide

opt for VCPI protected mode which is significantly faster than DPMI. When PMODE/W
makes callsto real mode, it switches the system into actual real mode rather than the slower
V86 mode (when it can, under VCPI thisis not possible, control must be passed back to the
VCPI server). In terms of speed, when your code is running under PMODE/W, it isrunning as
fast as the system will allow. In terms of size on disk, we need say ho more than for you to
look at the size of the PMODE/W executable and compare it to other extenders. In terms of
memory size, you may do tests yourself to confirm that PMODE/W does indeed suck up alot
less memory at run-time than the competition. In fact, PMODE/W will run even if thereis
absolutely no extended memory in the system (assuming of course there is enough low
memory for the program). To be fair, we must say that we squished the PMODE/W
executable with our own compression program written expressly for the purpose. This
demonstrates the extent we took most of our optimizations to.

When run under a clean system, XM S, or VCPI, PMODE/W has control of protected mode. In
this case, it can set up the system to run as fast as possible under the various conditions. Under
DPMI, the DPMI host of the system will have full protected mode control and PMODE/W
will install its DOS extensions on top of that. If the system provides both VCPI and DPMI
services, PMODE/W will use the VCPI servicesfor faster execution, unless instructed not to
by the setup program. When PMODE/W does have protected mode control under
clean/XMS/VCPI, it runs al code at a privilege level of zero. In addition, under a clean or

XMS system, paging will not be enabled. Thisis only a minor speed increase, but thereis no
real need to manage paging.

PMODE/W provides a subset of DPMI 0.9 function calls and general functionality when a
DPMI host is not present. PMODE/W will pass any software interrupts from protected mode
to their default real mode handlers, provided no protected mode handlers have been installed
for them, just as DPMI will. The general registers will be passed on to the real mode handler,
but the segment registers cannot be as they have different meaningsin real mode and
protected mode. The flags will be passed back from the real mode handler. This provides a
simple interface to all real mode interrupt routines which do not take parametersin the
segment registers, for example, INT 16h function 00h.

Any IRQs that occur in protected mode and have not been hooked by a protected mode
handler will be sent on to their real mode handlers. If an IRQ occursin rea mode, and a
protected mode handler has hooked that IRQ, it will be sent to the protected mode handler
first. The protected mode handler may chain to the real mode handler for that IRQ by calling
the previous protected mode handler for that IRQ. This behavior isin accordance with the
DPMI standard. If you hook a protected mode IRQ (INT 31h function 0205h), then hook the
same IRQ inreal mode (INT 31h function 0201h), the protected mode handler will be called if
the IRQ occursin protected mode, and the real mode handler will handle the IRQs if they
occur in real mode. Setting up two handlers like this assures minimal latency. This means a
handler will get control when the IRQ occurs as soon as physically possible. PMODE/W does
have to intervene in the IRQ process, however, when the low 8 IRQs are mapped to INTs 08h-
15h to differentiate IRQs from CPU exceptions.

In accordance with DPMI specifications, PMODE/W will pass up software interrupts 1ch
(BIOS timer tick), 23h (DOS CTRL+C), and 24h (DOS critical error) from real mode to
protected mode. This means that those interrupts can be hooked directly in protected mode
without having to set up a callback mechanism yourself. PMODE/W will also pass interrupt
1bh (BIOS CTRL+BREAK) from real mode up to protected mode. Thisis not a DPMI
requirement, but it is necessary for the sake of compatibility with DOS/4GW. Another
departure by PMODE/W from official DPMI specifications is in extended memory allocation.
DPMI documentation states that the block of extended memory allocated through function
0501h is guaranteed at least paragraph alignment. The PMODE/W DPMI implementation will
enforce only DWORD alignment.

When a PMODE/W executable is run, PMODE/W will attempt to switch the system into
protected mode and load the protected mode portion of the same executable. If there is some
error, not enough memory, or a system incompatibility, PMODE/W will exit with an error
message. |f loading was successful, PMODE/W will pass execution control on to the program.

81

82

Programmer’s Reference

PMODE/W will load any 16 bit code and data into low memory, but 32 bit code and data may
be loaded into low or extended memory depending on availability.

There are anumber of modifiable parametersin the PMODE/W extender executable that
affect protected mode execution. For the most part, these parameters deal with memory.
PMODE/W allocates one large block of extended memory for its pool from which it provides
memory to its client program. There is a maximum value for the extended memory to be
alocated. By default, the maximum is all of the extended memory in the system. The
maximum value reflects the size of the block you want PMODE/W to take from the system,
not necessarily the size of the largest block available to the default GetMem procedures. Y ou
may set the maximum to zero to indicate you do not want PMODE/W to allocate ANY
extended memory. The amount of memory that you allow PMODE/W to allocate from the
system determines how much extended memory will be left to other if you shell out of your
PMODE/W program.

Another variable specifies the amount of low memory for PMODE/W to TRY to keep free. If
PMODE/W can, it will accommodate this value by loading 32 bit code and data into extended
memory. If there is not enough extended memory available for this, 32 bit code and data will
be loaded into low memory anyway. If PMODE/W can not keep this much low memory free,
it will not exit with an error message. Setting this parameter to a high value will, in effect,
duplicate the DOS/4GW behavior of loading all 32 bit code and data into extended memory.
If you do not necessarily need any extralow memory free during the execution of your
program, you may set this value to zero.

Thereisagroup of parameters that specify the number and size of nested mode switch stacks.
Whenever you make a call to real mode, or a callback or IRQ is passed from real mode to its
routine in protected mode, a nested stack is used. These parameters have meaning only if the
programis not run under a DPMI system. If aDPMI host isin place when the programis run,
it providesits own nested stacks for mode switches. The number of nested stacks directly
affects the number of nested mode switches your program can make using the various mode
switch methods. The size of both the real mode and protected mode nested stacks can also be
specified. By default, these values are high enough for normal operation. However, if you
intend to use alot of stack variablesin a protected mode IRQ handler, or alot of recursive
calls, you may need to increase the size of the protected mode nested stacks. The more nested
stacks you specify, and the larger they are, the more low memory is needed by PMODE/W
during execution.

Another group of variables that has meaning only under clean/XM S/V CPI execution specify
the number of selectors and DPMI callbacks you want PMODE/W to make available. The
more selectors and callbacks you ask for, the more low memory is used by PMODE/W,
though the amount of low memory used for each is quite low so that large numbers of each
can be specified. There will usually be alittle less than the number of selectors and callbacks
you request available to your program due to the protected mode system and Pascal code
using some of them. For this reason you should request 20h-40h more selectors and 2-4 more
callbacks than you will need in your program.

There are four other miscellaneous parameters that can be set. There is a maximum number of
page tables to use under aVCPI system. Each page table allocated requires 4k of low memory
to be used by PMODE/W and maps 4M of memory. This directly affects the maximum
amount of extended memory available under aVCPI system. This parameter is only the
maximum number of page tablesto alow. At run-time, only as many page tables will be
allocated as are needed. Under a clean/XM S system, no page tables are required, so this
parameter has no meaning. But under VCPI, you may want to restrict the number of page
tables to save low memory if you do not heed more than a certain amount of extended
memory. This puts a maximum ceiling on extended memory under VCPI which may be lower
than the maximum actually specified in the other variable. The second parameter specifiesthe
order of DPMI and VCPI detection. By default, VCPI will be checked before DPMI, but you
may set DPMI to be checked before VCPI so that under a system which supports both VVCPI
and DPMI, DPMI will be used. The third variable specifies how many pages to reserve for
physical address mapping calls (INT 31h function 0800h) under VCPI. Under XMS or a clean
system, paging is not enabled, and PMODE/W does not need pages for physical address
mapping. Each page will allow you to map up to 4M of address space and takes up 4k of

TMT PASCAL

Developer Guide

extended memory. So for example, if you intend to map a2M frame buffer of a video card,
you will need only one page. Y ou may set this parameter to zero if you do not intend to map
any physical addresses. The fourth parameter specifies whether PMODE/W displaysits
banner at startup. This may be desirable to indicate that the program is indeed running, and
has not crashed, as allocating memory from certain VCPI servers can be a slow process.

C.2 Supported DPMI INT 31h functions

PMODE/W duplicates a subset of DPMI protected mode functions. These functions are
available ONLY in protected through INT 31h. They provide descriptor services, extended
memory services, interrupt services, trandation services, and some other miscellaneous
things. A function iscalled by setting AX to the function code, setting any other registers for
the function, and executing INT 31h. Upon return, the carry flag will be clear if the function
was successful. If the carry flag is set, the function failed. All other registers are preserved
unless otherwise specified. In addition to the functions listed here, functions 0600h, 0601h,
0702h, and 0703h will return with the carry flag clear to stay compatible with code that uses
those particular DPMI functions.

Function 0000h - Allocate Descriptors

Allocates one or more descriptors in the client’s descriptor table. The descriptor(s) allocated
must be initialized by the application with other function calls.

In:

AX = 0000h

CX = nunber of descriptors to allocate
Out:

i f successful:
carry flag clear

AX = base sel ector
if failed:

carry flag set
Remarks:

If more that one descriptor is requested, the function returns a base selector referencing the
first of a contiguous array of descriptors. The selector values for subsequent descriptorsin the
array can be calculated by adding the value returned by INT 31h function 0003h.

The allocated descriptor(s) will be set to expand-up writeable data, with the present bit set and
abase and limit of zero. The privilege level of the descriptor(s) will match the client’s code
segment privilege level.

Function 0001h - Free Descriptor

Frees a descriptor.

In:

AX = 0001h

BX = sel ector for the descriptor to free
Out:

i f successful:
carry flag clear

83

84

Programmer’s Reference

if failed:
carry flag set
Remarks:

Each descriptor allocated with INT 31h function 0000h must be freed individually with the
function. Even if it was previoudly allocated as part of a contiguous array of descriptors.
Under DPMI 1.0/ CPI/XM S/raw, any segment registers which contain the selector being
freed are zeroed by this function.

Function 0002h - Segment to Descriptor

Converts area mode segment into a protected mode descriptor.

In:

AX = 0002h

BX = real node segnent
Out:

i f successful:
carry flag clear

AX = selector
if failed:

carry flag set
Remarks:

Multiple calls for the same real mode segment return the same selector. The returned
descriptor should never be modified or freed.

Function 0003 - Get Selector Increment Value

The Allocate Descriptors function (0000h) can allocate an array of contiguous descriptors, but
only return a selector for the first descriptor. The value returned by this function can be used
to calculate the selectors for subsequent descriptorsin the array.

In:
AX = 0003h
Out:

al ways successful:
carry flag clear
AX = selector increnent val ue

Remarks:
The increment value is always a power of two.

Function 0006 - Get Segment Base Address

Returns the 32bit linear base address from the descriptor table for the specified segment.

In:
AX = 0006h
BX = sel ect or
Out:

i f successful:

TMT PASCAL

Developer Guide

carry flag clear

CX:DX = 32bit linear base address of segnent
if failed:

carry flag set

Remarks:
Client programs must use the L SL instruction to query the limit for a descriptor.

Function 0007 - Set Segment Base Address

Sets the 32bit linear base address field in the descriptor for the specified segment.

In:

AX = 0007h

BX = sel ector

CX:DX = 32bit linear base address of segment
Out:

i f successful:

carry flag clear
if failed:

carry flag set
Remarks:
Under DPMI 1.0/V CPI/XM S/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed. We hope you
have enough sense not to try to modify your current CS or SS descriptor.

Function 0008 - Set Segment Limit

Setsthe limit field in the descriptor for the specified segment.

In:
AX = 0008h
BX = sel ect or
CX: DX = 32bit segnent limt
Out:

i f successful:
carry flag clear
if failed:
carry flag set

Remarks:

The value supplied to the function in CX:DX isthe byte length of the segment-1. Segment
limits greater than or equal to 1M must be page aligned. That is, they must have the low 12
bits set.

This function has an implicit effect onthe “G” bit in the segment’s descriptor. Client
programs must use the LSL instruction to query the limit for a descriptor.

Under DPMI 1.0/V CPI/XM S/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed. We hope you
have enough sense not to try to modify your current CS or SS descriptor.

85

86

Programmer’s Reference

Function 0009 - Set Descriptor Access Rights

Modifies the access rights field in the descriptor for the specified segment.

In:

AX = 0009h

BX = sel ector

CX = access rights/type word
Out:

i f successful:
carry flag clear

if failed:
carry flag set
Remarks:

The access rights/type word passed to the function in CX has the following format:

Bit: 15 14 13 12 11 10 9 2 7] 5 4 3 2 1 4]

@ |B/D| 0 ? ? 1 DPL 1 |c/D|ESC|W/R] A

G - O=byte granular, 1l=page granul ar
B/D - O=default 16bit, l1=default 32bit
DPL - must be equal to caller's CPL
C/ D - O=data, 1l1=code
E/ C - data: O=expand-up, 1l=expand-down
code: nust be 0 (non-conform ng)
WR - data: O=read, l=read/wite
code: nust be 1 (readable)

A - 0=not accessed, l=accessed
0 - nmust be O

1 - nust be 1

? - ignored

Client programs should use the LAR instruction to examine the access rights of a descriptor.

Under DPMI 1.0/V CPI/XM S/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed.

We hope you have enough sense not to try to modify your current CS or SS descriptor.

Function 000A - Create Alias Descriptor

Creates a new data descriptor that has the same base and limit as the specified descriptor.

In:
AX = 000ah
BX = sel ector
Out:

i f successful:
carry flag clear
AX = data selector (alias)
if failed:
carry flag set

TMT PASCAL

Developer Guide

Remarks:

The selector supplied to the function may be either a data descriptor or a code descriptor. The
alias descriptor created is aways an expand-up writeable data segment.

The descriptor alias returned by this function will not track changes to the original descriptor.

Function 000B - Get Descriptor

Copies the descriptor table entry for the specified selector into an 8 byte buffer.

In:

AX = 000bh

BX = sel ector

ES: EDI = sel ector:offset of 8 byte buffer
Out:

i f successful:

carry flag clear

buf fer pointed to by ES: EDl contains descriptor
if failed:

carry flag set

Function 000C - Set Descriptor

Copies the contents of an 8 byte buffer into the descriptor for the specified selector.

In:

AX = 000ch

BX = sel ector

ES: EDI = selector:offset of 8 byte buffer containing
descri ptor
Out:

i f successful:
carry flag clear

if failed:
carry flag set
Remarks:

The descriptors access rights/type word at offset 5 within the descriptor follows the same
format and restrictions as the access rights/type parameter CX to the Set Descriptor Access
Rights function (0009h).

Under DPMI 1.0/V CPI/XM S/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed.

We hope you have enough sense not to try to modify your current CS or SS descriptor or the
descriptor of the buffer.

Function 0100 - Allocate DOS Memory Block

Allocates low memory through DOS function 48h and allocates it a descriptor.

In:
AX = 0100h

87

88

Programmer’s Reference

BX = paragraphs to allocate
Out:

i f successful:
carry flag clear
AX = real node segnment address

DX protected node sel ector for nenory bl ock
if failed:

carry flag set

AX = DCS error code

BX = size of largest avail abl e bl ock

Function 0101 - Free DOS Memory Block

Frees alow memory block previously allocated by function 0100h.

In:

AX = 0101h

DX = protected node sel ector for nenory bl ock
Out:

i f successful:
carry flag clear

if failed:
carry flag set
AX = DOS error code

Function 0102 - Resize DOS Memory Block

Resizes alow memory block previoudly alocated by function 0100h.

In:

AX = 0102h

BX = new bl ock size in paragraphs

DX = protected node sel ector for nenory bl ock
Out:

i f successful:
carry flag clear

if failed:
carry flag set
AX = DOCs error code
BX = size of |argest avail abl e bl ock

Function 0200 - Get Real Mode Interrupt Vector

Returns the real mode segment:offset for the specified interrupt vector.

In:

AX = 0200h

BL = interrupt nunber
Out:

al ways successful:
carry flag clear
CX: DX = segnent:of fset of real node interrupt handl er

TMT PASCAL

Developer Guide

Remarks:
The value returned in CX is areal mode segment address, not a protected mode selector.

Function 0201 - Set Real Mode Interrupt Vector

Sets the real mode segment:offset for the specified interrupt vector.

In:

AX = 0201h

BL = interrupt nunber

CX: DX = segnent:offset of real node interrupt handl er
Out:

al ways successful:
carry flag clear

Remark:

The value passed in CX must be areal mode segment address, not a protected mode selector.
Consequently, the interrupt handler must either reside in DOS memory (below the 1M
boundary) or the client must allocate a real mode callback address.

Function 0202 - Get Processor Exception Handler Vector

Returns the address of the current protected mode exception handler for the specified
exception number.

In:

AX = 0202h

BL = exception nunmber (00h-1fh)
Out:

i f successful:

carry flag clear

CX: EDX = sel ector:of fset of exception handler
if failed:

carry flag set

Remarks:
PMODE/W handles exceptions under clean/XMS/VCPI environments. Under a DPMI
environment, exception handling is provided by the DPMI host.

PMODE/W only traps exceptions 0 through 14. The default behavior is to terminate execution
and do a debug dump. PMODE/W will terminate on exceptions 0, 1, 2, 3, 4, 5, and 7, instead
of passing them down to the real mode handlers as DPMI specifications state.

Function 0203 - Set Processor Exception Handler Vector

Sets the address of a handler for a CPU exception or fault, allowing a protected mode
application to intercept processor exceptions.

In:

AX
BL

0203h
excepti on nunber (00h- 1fh)

89

90

Programmer’s Reference

CX: EDX = sel ector:offset of exception handl er
Out:

i f successful:
carry flag clear

if failed:
carry flag set
Remarks:

PMODE/W handles exceptions under clean/ XM S/VCPI environments. Under a DPMI
environment, exception handling is provided by the DPMI host.

PMODE/W only traps exceptions 0 through 14. The default behavior is to terminate execution
and do a debug dump. PMODE/W will terminate on exceptions 0, 1, 2, 3, 4, 5, and 7, instead
of passing them down to the real mode handlers as DPMI specifications state.

If you wish to hook one of the low 8 interrupts, you must hook it as an exception. It will not
be called if you hook it with function 0205h.

Function 0204 - Get Protected Mode Interrupt Vector

Returns the address of the current protected mode interrupt handler for the specified interrupt.

In:

AX = 0204h

BL = interrupt nunber
Out:

al ways successful:

carry flag clear

CX: EDX = sel ector:offset of protected node interrupt
handl er

Remarks:
The value returned in CX isavalid protected mode selector, not areal mode segment address.

Function 0205 - Set Protected Mode Interrupt Vector

Sets the address of the protected mode interrupt handler for the specified interrupt.

In:

AX
BL
CX: EDX

Out:

i f successful:
carry flag clear
if failed:
carry flag set

Remarks:
The value passed in CX must be avalid protected mode selector, not a real mode segment
address.

If you wish to hook one of the low 8 interrupts, you must hook it as an exception. It will not
be called if you hook it with function 0205h.

0205h
i nterrupt nunber
sel ector offset of protected node interrupt handl er

TMT PASCAL

Developer Guide

Function 0300 - Simulate Real Mode Interrupt

Simulates an interrupt in real mode. The function transfers control to the address specified by
the real mode interrupt vector. The real mode handler must return by executing an IRET.

In:
AX = 0300h
BL = interrupt nunber
BH = nust be O
CX = nunber of words to copy fromthe protected node

stack to the real node stack
ES: EDI = selector:offset of real node register data structure
in the follow ng format:

O fset Length Contents

00h 4 ED

04h 4 ESI

08h 4 EBP

Och 4 reserved, ignored

10h 4 EBX

14h 4 EDX

18h 4 ECX

1ch 4 EAX

20h 2 CPU status fl ags

22h 2 ES

24h 2 DS

26h 2 FS

28h 2 GS

2ah 2 | P (reserved, ignored)
2ch 2 CS (reserved, ignored)
2eh 2 SP

30h 2 SS

Out:

i f successful:
carry flag clear

ES: EDI = sel ector offset of nodified real node register
data structure
if failed:
carry flag set
Remarks:

The CS:IPin the real mode register data structure isignored by this function. The appropriate
interrupt handler will be called based on the value passed in BL.

If the SS:SP fieldsin the real mode register data structure are zero, areal mode stack will be
provided by the host. Otherwise the real mode SS:SP will be set to the specified values before
the interrupt handler is called.

The flags specified in the real mode register data structure will be put on the real mode
interrupt handler’ s IRET frame. The interrupt handler will be called with the interrupt and
trace flags clear.

Values placed in the segment register positions of the data structure must be valid for real
mode. That is, the values must be paragraph addresses, not protected mode selectors.

The target real mode handler must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks whileit is running, but must
return on the same stack that it was called on and must return with an IRET.

91

92

Programmer’s Reference

When this function returns, the real mode register data structure will contain the values that
were returned by the real mode interrupt handler. The CS:IP and SS:SP values will be
unmodified in the data structure.

It isthe caller’ s responsibility to remove any parameters that were pushed on the protected
mode stack.

Function 0301 - Call Real Mode Procedure With Far Return Frame

Simulates a FAR CALL to areal mode procedure. The called procedure must return by
executing a RETF instruction.

In:
AX = 0301h
BH = nust be O
CX = nunber of words to copy fromthe protected node

stack to the real node stack
ES: EDI = selector:offset of real node register data structure
in the follow ng format:

Offset Length Contents

00h 4 EDI

04h 4 ESI

08h 4 EBP

Och 4 reserved, ignored
10h 4 EBX

14h 4 EDX

18h 4 ECX

1ch 4 EAX

20h 2 CPU status flags
22h 2 ES

24h 2 DS

26h 2 FS

28h 2 GS

2ah 2 I P

2ch 2 Cs

2eh 2 SP

30h 2 SS

Out:

i f successful:
carry flag clear
ES: EDI = selector offset of nodified real node register
data structure

if failed:
carry flag set
Remarks:

The CS:IPin the real mode register data structure specifies the address of the real mode
procedure to call.

If the SS:SP fieldsin the real mode register data structure are zero, areal mode stack will be
provided by the host. Otherwise the real mode SS:SP will be set to the specified values before
the procedure is called.

Values placed in the segment register positions of the data structure must be valid for real
mode. That is, the values must be paragraph addresses, not protected mode selectors.

Thetarget real mode procedure must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks while it is running, but must

TMT PASCAL

Developer Guide

return on the same stack that it was called on and must return with a RETF and should not
clear the stack of any parameters that were passed to it on the stack.

When this function returns, the real mode register data structure will contain the values that
were returned by the real mode procedure. The CS:IP and SS:SP values will be unmodified in
the data structure.

It isthe caller’s responsibility to remove any parameters that were pushed on the protected
mode stack.

Function 0302 - Call Real Mode Procedure With IRET Frame

Simulatesa FAR CALL with flags pushed on the stack to areal mode routine. The real mode
procedure must return by executing an IRET instruction or aRETF 2.

In:
AX = 0302h
BH = nmust be O
CX = nunber of words to copy fromthe protected node

stack to the real node stack
ES: EDI = selector:offset of real node register data structure
in the follow ng format:
O fset Length Contents

00h 4 ED

04h 4 ESI

08h 4 EBP

Och 4 reserved, ignored
10h 4 EBX

14h 4 EDX

18h 4 ECX

1ch 4 EAX

20h 2 CPU status fl ags
22h 2 ES

24h 2 DS

26h 2 FS

28h 2 GS

2ah 2 I P

2ch 2 Cs

2eh 2 SP

30h 2 SS

Out:

i f successful:
carry flag clear

ES: EDI = sel ector offset of nodified real node register
data structure
if failed:
carry flag set
Remarks:

The CS:IPin the real mode register data structure specifies the address of the real mode
procedure to call.

If the SS:SP fieldsin the real mode register data structure are zero, areal mode stack will be
provided by the host. Otherwise the real mode SS:SP will be set to the specified values before
the procedure is called.

The flags specified in the real mode register data structure will be put on the real mode
procedure’s IRET frame. The procedure will be called with the interrupt and trace flags clear.

93

94

Programmer’s Reference

Values placed in the segment register positions of the data structure must be valid for real
mode. That is, the values must be paragraph addresses, not protected mode selectors.

Thetarget real mode procedure must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks whileit is running, but must
return on the same stack that it was called on and must return with an IRET or discard the
flags from the stack with a RETF 2 and should not clear the stack of any parameters that were
passed to it on the stack.

When this function returns, the real mode register data structure will contain the values that
were returned by the real mode procedure. The CS:IP and SS:SP values will be unmodified in
the data structure.

It isthe caller’ s responsibility to remove any parameters that were pushed on the protected
mode stack.

Function 0303 - Allocate Real Mode Callback Address

Returns a unique real mode segment:offset, known as a “real mode callback”, that will
transfer control from real mode to a protected mode procedure. Callback addresses obtained
with this function can be passed by a protected mode program to areal mode application,
interrupt handler, device driver, TSR, etc... so that the real mode program can call procedures
within the protected mode program.

In:

AX = 0303h
DS: ESI = selector:offset of protected node procedure to call
ES: EDI = selector:offset of 32h byte buffer for real node
regi ster data structure to be used when calling the callback
routine.

Out:

i f successful:
carry flag clear

CX: DX = segnent:offset of real node call back
if failed:
carry flag set
Remarks:

A descriptor may be allocated for each callback to hold the real mode SS descriptor. Real
mode callbacks are alimited system resource. A client should release a callback that it is no
longer using.

Function 0304 - Free Real Mode Callback Address

Releases areal mode callback address that was previously allocated with the Allocate Real
Mode Callback Address function (0303h).

In:
AX = 0304h

CX: DX = segnent:offset of real node callback to be freed
Out:

i f successful:
carry flag clear
if failed:
carry flag set

TMT PASCAL

Developer Guide

Remark:

Real mode callbacks are a limited system resource. A client should release any callback that it
isno longer using.

Function 0305 - Get State Save/Restore Addresses

Returns the address of two procedures used to save and restore the state of the current task’s
registersin the mode (protected or real) which is not currently executing.

In:
AX = 0305h
Out:

al ways successful:
carry flag clear

AX = size of buffer in bytes required to save state

BX: CX = segnent:offset of real node routine used to
save/restore state

SI:EDI = selector:offset of protected nbode routine used to
save/restore state
Remarks:

_ The real mode segment:offset returned by this function should be called only in real mode to
save/restore the state of the protected mode register The protected mode sel ector:offset
returned by this function should be called only in protected mode to save/restore the state of
the real mode registers.

Both of the state save/restore procedures are entered by a FAR CALL with the following
parameters:

AL = 0 to save state
= 1torestore state
ES: (E)DI = (selector or segnent):offset of state buffer

The state buffer must be at |least as large as the value returned in AX by INT 31h function
0305h. The state save/restore procedures do not modify an registers. DI must be used for the
buffer offset in real mode, EDI must be used in protected mode.

Some DPMI hosts and VCPI/XM S/raw will not require the state to be saved, indicating this
by returning a buffer size of zeroin AX. In such cases, that addresses returned by this function
can till be called, athough the will simply return without performing any useful function.

Clients do not need to call the state save/restore procedures before using INT 31h function
0300h, 0301h, or 0302h. The state save/restore procedures are provided for clients that use the
raw mode switch services only.

Function 0306 - Get Raw Mode Switch Addresses

Returns addresses that can be called for low level mode switching.

In:
AX = 0306h
Out:

al ways successf ul
carry flag clear
BX: CX = segment:offset of real to protected node switch
procedure

95

96

Programmer’s Reference

Sl:EDI = selector:offset of protected to real npde switch
procedur e
Remarks:

The real mode segment:offset returned by this function should be called only in real mode to
switch to protected mode. The protected mode sel ector:offset returned by this function should
be called only in protected mode to switch to real mode.

The mode switch procedures are entered by a FAR JMP to the appropriate address with the
following parameters:

AX = new DS
CX = new ES
DX = new SS
(E)BX = new (E) SP
Sl = new CS
(E)DI = new (E)IP

The processor is placed into the desired mode, and the DS, ES, SS, (E)SP, CS, and (E)IP
registers are updated with the specific values. In other words, execution of the client continues
in the requested mode at the address provided in registers Sl:(E)DI. The values specified to be
placed into the segment registers must be appropriate for the destination mode. That is,
segment addresses for real mode, and selectors for protected mode.

Thevaluesin EAX, EBX, ECX, EDX, ESI, and EDI after the mode switch are undefined.
EBP will be preserved across the mode switch call so it can be used as a pointer. FS and GS
will contain zero after the mode switch.

If interrupts are disabled when the mode switch procedure isinvoked, they will not be re-
enabled by the host (even temporarily). It is up to the client to save and restore the state of the
task when using this function to switch modes. This requires the state save/restore procedures
whose addresses can be obtained with INT 31h function 0305h.

Function 0400 - Get Version

Returns the version of the DPMI Specification implemented by the DPMI host. The client can
use thisinformation to determine what functions are available.

In:
AX = 0400h

Out:

al ways successful:
carry flag clear
AH = DPM nmjor version as a binary nunber (VCPI/ XM/ raw
returns 00h)
AL = DPM ninor version as a binary nunber (VCPI/XMS/ raw
returns 5ah)
BX = flags:
Bits Significance
0 0 = host is 16bit (PMODE/ W never runs under one

of these)
1 = host is 32bit
1 0 = CPU returned to V86 node for reflected
interrupts
1 = CPUreturned to real node for reflected
interrupts
2 0 = virtual nenory not supported
1 = virtual nenory supported

3-15 reserved
CL = processor type:

TMT PASCAL

Developer Guide

03h = 80386
04h = 80486
05h = 80586
06h-ffh = reserved
DH = current value of master PIC base interrupt (low 8
| RQs)
DL = current value of slave PIC base interrupt (high 8
| RQs)
Remark:

The major and minor version numbers are binary, not BCD. So aDPMI 0.9 implementation
would return AH as 0 and AL as 5ah (90).

Function 0500 - Get Free Memory Information

Returns information about the amount of available memory. Since DPMI clients could be
running in a multitasking environment, the information returned by this function should be
considered advisory.

In:

AX = 0500h

ES: EDI = sel ector:offset of 48 byte buffer
Out:

i f successful:
carry flag clear
buffer is filled with the foll ow ng informtion:
O fset Length Contents

00h 4 Largest available free block in bytes
04h 2ch Q her fields only supplied by DPM
if failed:
carry flag set
Remark:

Only the first field of the structure is guaranteed to contain avalid value. Any fieldsthat are
not supported by the host will be set to -1 (Offffffffh) to indicate that the information is not
available.

Function 0501 - Allocate Memory Block

Allocates a block of extended memory.

In:
AX = 0501h
BX: CX = size of block in bytes (nust be non-zero)
Out:
i f successful:
carry flag clear
BX: CX = linear address of allocated nmenory bl ock
SI:DI = nenory block handl e (used to resize and free
bl ock)
if failed:

carry flag set

97

98

Programmer’s Reference

Remarks:
The allocated block is guaranteed to have at least DWORD alignment.

This function does not allocate any descriptors for the memory block. It is the responsibility
of the client to allocate and initialize any descriptors needed to access the memory with
additional function calls.

Function 0502 - Free Memory Block

Frees a memory block previously allocated with the Allocate Memory Block function
(0501h).

In:

AX = 0502h

SI: DI = nenory bl ock handl e
Out:

i f successful:
carry flag clear

if failed:
carry flag set
Remark:

No descriptors are freed by this call. It isthe client’s responsibility to free any descriptors that
it previously allocated to map the memory block. Descriptors should be freed before memory
blocks.

Function 0503 - Resize Memory Block

Changes the size of a memory block previoudy allocated with the Allocate Memory Block
function (0501h).

In:
AX = 0503h
BX: CX = new size of block in bytes (nust be non-zero)
SI:DI = nenory block handl e

Out:

i f successful:
carry flag clear

BX: CX = new |linear address of nenory bl ock
SI:DI = new nenory bl ock handl e
if failed:
carry flag set
Remarks:

After this function returns successfully, the previous handle for the memo block isinvalid and
should not be used anymore.

It isthe client’s responsibility to update any descriptors that map the memory block with the
new linear address after resizing the block.

TMT PASCAL

Developer Guide

Function 0800 - Physical Address Mapping

Converts a physical addressinto alinear address. This functions allows the client to access
devices mapped at a specific physical memory address.

In:
AX = 0800h
BX: CX = physical address of nenory
SI:DI = size of region to map in bytes
Out:
i f successful:
carry flag clear
BX: CX = linear address that can be used to access the
physi cal menory
if failed:
carry flag set
Remarks:

It isthe caller’s responsibility to allocate and initialize a descriptor for access to the memory.

Clients should not use this function to access memory below the 1 MB boundary.

Function 0801 - Free Physical Address Mapping

Releases a mapping of physical to linear addresses that was previoudly obtained with function
0800h.

In:

AX

BX: CX
cal |
Out:

i f successful:
carry flag clear
if failed:
carry flag set

Remark:

The client should call this function when it is finished using a device previously mapped to
linear addresses with function 0801h.

0801h
i near address returned by physical address napping

Function 0900 - Get and Disable Virtual Interrupt State

Disables the virtua interrupt flag and returns the previous state of it.

In:
AX = 0900h
Out:

al ways successful:

carry flag clear

AL =0 if virtual interrupts were previously disabled
AL = 1 if virtual interrupts were previously enabl ed

99

100

Programmer’s Reference

Remarks:
AH isnot changed by this function. Therefore the previous state can be restored by simply
executing another INT 31h.

A client that does not need to know the prior interrupt state can execute the CLI instruction
rather than calling this function. The instruction may be trapped by a DPMI host and should
be assumed to be very slow.

Function 0901 - Get and Enable Virtual Interrupt State

Enables the virtual interrupt flag and returns the previous state of it.

In:
AX = 0901h
Out:

al ways successful:
carry flag clear

AL =0 if virtual interrupts were previously disabled
AL =1 if virtual interrupts were previously enabl ed
Remarks:

AH isnot changed by this function. Therefore the previous state can be restored by simply
executing another INT 31h.

A client that does not need to know the prior interrupt state can execute the STI instruction
rather than calling this function. The instruction may be trapped by a DPMI host and should
be assumed to be very slow.

Function 0902 - Get Virtual Interrupt State

Returns the current state of the virtual interrupt flag.

In:
AX = 0902h
Out:

al ways successful:
carry flag clear

AL =0 if virtual interrupts are disabled
AL =1 if virtual interrupts are enabled
Remark:

This function should be used in preference to the PUSHF instruction to examine the interrupt
flag, because the PUSHF instruction returns the physical interrupt flag rather than the
virtualized interrupt flag. On some DPMI hosts, the physical interrupt flag will always be
enabled, even when the hardware interrupts are not being passed through to the client.

Function EEFF - Get DOS Extender Information

Returns information about the DOS extender.

In:
AX = EEFFh

TMT PASCAL | 101

Developer Guide

Out:

i f successful:
carry flag clear

EAX = ' PMDW (504D4457h)
ES: EBX = sel ector:offset of ASCI|Z copyright string
CH = protected nbde systemtype (O=raw, 1=XM5, 2=VCPI,
3=DPM)
CL = processor type (3=386, 4=486, 5=586)
DH = extender MAJOR version (binary)
DL = extender M NOR version (binary)
if failed:
carry flag set
Remarks:

In PMODE/W’ simplementation of this function, the value returned in ES is equivalent to the
4G data selector returned in DS at startup.

Thisfunction is always successful under PMODE/W.

102

Programmer’s Reference

Appendix D

|DE Overview

TMT Pascal compiler comes with an IDE for Win32, which allows oneto easily edit, compile
and execute applications for any target.

Features

e Tunable syntax highlighting.

e Multi-level undo buffer.

e Codetemplates.

e Clipboard history window.

e Comfortable multi-window editor, which allows one to edit and run sources.

e Upto 10 bookmarks.

¢ New Windows-based context-sensitive help system.

e ANSI/OEM character insertion table.

« Powerful search/replace engine, which allow to find specified text in open windows and
directories.

e Easy inuse compiler options setup menu.

e Multi-target compilation support.

Restrictions

The built-in debugger is not implemented in the current version of IDEW32.

See also: Bookmarks, Code Templates, Compiler Options, Directories, Display, Editor,
Editor Shortcuts

D.1 Bookmarks

The Code Editor supports up to 10 bookmarks. Set your own bookmarks by right-clicking in
the Code editor and choosing the toggle Bookmarks. To jump to a bookmark, right-click and
choose Goto Bookmarks. You can also toggle bookmark #0 by left-clicking on the left
gutter.

The following bookmark operations shortcuts are available:

TMT PASCAL

Developer Guide

Shortcut Action O
Shift+Ctrl+0 Sets bookmark 0
Shift+Ctrl+1 Sets bookmark 1
Shift+Ctrl+2 Sets bookmark 2
Shift+Ctrl+3 Sets bookmark 3
Shift+Ctrl+4 Sets bookmark 4
Shift+Ctrl+5 Sets bookmark 5
Shift+Ctrl+6 Sets bookmark 6
Shift+Ctrl+7 Sets bookmark 7
Shift+Ctrl+8 Sets bookmark 8
Shift+Ctrl+9 Sets bookmark 9
Shortcut Action 0
Ctrl+0 Goes to bookmark O
Ctrl+1 Goesto bookmark 1
Ctrl+2 Goes to bookmark 2
Ctrl+3 Goesto bookmark 3
Ctrl+4 Goes to bookmark 4
Ctrl+5 Goes to bookmark 5
Ctrl+6 Goes to bookmark 6
Ctrl+7 Goes to bookmark 7
Ctrl+8 Goes to bookmark 8
Ctrl+9 Goes to bookmark 9

D.2 Code Templates (Options | Environment | Code Templates)

A set of templatesis available to insert common programming statements into your code.
Templates can be edited and added. While working in the Code Editor, press Ctrl+J to display
the code templates defined.

To edit the name and description:

Select the name you want to edit. Click the Edit button. Edit the name and description fields
as needed and click OK.

To edit a template:

When aname is selected, the code to be inserted in the file when the template is selected is
displayed in the code window. Move the cursor to the code window and edit the text as you
desire.

To define the insertion point:

Place avertical bar «» in the code statement to define the point to begin insertion when the
template isinserted in a code file. The cursor will be placed in the point defined by the
vertical bar.

To add a template;

Click Add button. After entering a Name and Description in the dialog box displayed, click
OK.

To delete a template:
Select the name of the template you want to delete. Click Delete or press Del.

103

104

Programmer’s Reference
D.3 Compiler Options (Options| Compiler)

Primary file
Specify the primary file to be used for the target executablefile.

Active Window
Check this box to set a currently active window as primary file.

Word alignment data
Switches on/off word-alignment of variables and typed constants. Corresponds to ($A).

Strict var-strings
Controls type-checking on strings passed as variable parameters. Corresponds to ($V).

Range checking
Enables and disables the generation of range-checking code. Corresponds to ($R).

Objectsand structures align
Switches on/off word-alignment of objects and structures. Corresponds to ($0A).

Debug information (MS-DOStarget only)
Switches on/off the generation of debug information. Correspondsto ($D).

1/O checking

Enables or disables the automatic code generation that checks the result of acall to an 1/0
procedure. Corresponds to ($1).

Local debug symbols (MS-DOStarget only)
Enables or disables the generation of local symbol information. Correspondsto ($L).

Open string params
Controls the meaning of variable parameters declared using string keyword. Corresponds to
($P).

Overflow checking (Q)
Controls the generation of overflow checking code. Corresponds to ($Q).

Typed pointers
Controls the types of pointer values generated by the @ operator. Correspondsto ($T).

Show warnings
Switches on/off warnings generation. Corresponds to ($W).

Extended syntax
Enables or disables Turbo Pascal’s extended syntax. Corresponds to ($X).

TMT PASCAL | 105

Developer Guide

Extender logo (MS-DOStarget only)
Switches on/off extender logo.

Complete Boolean eval

Switches on/off the two different models of code generation for the AND and OR Boolean
operators. Corresponds to ($B).

Frame optimization
Switches on/off stack frame optimization. Corresponds to (JOPTFRM).

Registers optimization
Switches on/off register optimization. Corresponds to (SOPTREG).

Full optimization

Switches on/off full optimization (Frame optimization + Registers optimization). Corresponds
to ($OPT).

C/C++ style comments
Switches on/off C/C++ style comments recognition. Corresponds to ($CC).

Ada-style comments
Aligns elements in structures to 32-bit boundaries. Corresponds to ($AC).

Intel MMX Assembler instructions

Enables/disables Intel MM X instructions support in built-in assembler. Corresponds to
(MM X).

AMD 3DNow! Assembler instructions

Enables/disables AMD 3DNow! Instructions support in built-in assembler. Corresponds to
(SAMD).

Typed Inc/Dec operations
Enables/disables typed Inc/Dec operations on pointers. Corresponds to ($T PO).

Max EXE size
Specifies the maximum size of the executable module.

Sack size
Specifies the size of the application stack.

Max OBJ size

Specifies the size of the buffer for object modules (FPD/FPO/FPW-files). This parameter
must be about one and a half times the size of the largest object module from the project.

Max resource size
Specifies the size of the linking buffer for Windows resources (RES-files).

106

Programmer’s Reference

Target (Multi-target Edition Only)
A drop-down box which allows one to select atarget Operating System.

D.4 Directories (Options| Directories)

Use this page to specify directories, compiler and stub names. Click the «...» button to run
directory browse window.

Root Path

Specifies directories where the TMT Pascal compiler has been installed. Default is
CA\TMTPL.

Sub name
Name of the stub file to be linked with a generated application.

Resource Compiler
Specifies a name of the command-line resource compiler.

Compiler
Specifies a name of the command-line TMT Pascal compiler.

Source Path

Specifies directories where the compiler looks for source files when it cannot find them.
Default is SRC:;SYS..\UNITS.

Unit Path

Specifies directories where the compiler looks for RTL unit files when it cannot find them.
Default is SRC:;SYS..\UNITS.

OBJ Path

Specifies directories where the compiler looks for OBJ files when it cannot find them. Default
iSSRC:;SYS..\UNITS.

D.5 Display (Options | Environment | Display)

Use the Color page of the Environment Options dialog box to specify how the different
elements of your code appear in the Code Editor.

Y ou can specify foreground and background colors for anything listed in the Element list box.
The sample Code Editor shows how your settings will appear in the Code Editor.

Display | General

Use the General page of the Environment Options dialog box to select display and font
options for the Code Editor

TMT PASCAL

Developer Guide

Visible right margin
Check to display aline at the right margin of the Code Editor.

Right margin
Set the right margin of the Code Editor. The default is 80 characters.

Margin color
Select acolor for the right margin.

Visible gutter
Check to display the gutter on the left edge of the Code Editor.

Gutter width
Set the width of the gutter in pixels.

Gutter color
Select acolor for the gutter.

Left indent
Specify the left indent for the Editor.

Font name

Select afont type from the available screen fonts installed on your system (shown in the drop-
down box). The Code Editor displays and uses only fixed size screen fonts. A sampletext is
displayed in the text box.

Font size

Select a Font name from the predefined font sizes associated with the font you selected in the
Font list box. A sampletext is displayed in the text box.

Display | Syntax Highlighting

Use the Syntax Highlighting page of the Environment Options/Display dialog box to specify
the syntax highlighting scheme to be used in the Code Editor.

Element

Specifies syntax highlighting for a particular code element. Y ou can choose from the Element
list or click the element in the sample Code Editor.

Color scheme

Enables you to quickly configure the color scheme using predefined color combinations. The
sample text box below shows how your settings will appear in the Code Editor. Predefined
color schemes are the following: Defaults, Classic, Borland Delphi, Microsoft Visual Studio,
Twilight, Ocean.

Foreground
Sets the foreground color for the selected code element.

107

108

Programmer’s Reference

Background
Sets the background color for the selected code el ement.

D.6 Editor (Options | Environment | Editor)

Use the Editor page of the Environment Options dialog box to customize the behavior of the
Code Editor.

Keystroke mapping
Use the Keystroke mapping to configure the editor.

Overwrite blocks

Replaces a marked block of text with whatever istyped next. If Persistent Blocksis aso
selected, the text you enter is appended following the currently selected block.

Limit EOL
Limits the position of the cursor beyond the end-of-line character.

Force Cut and Copy enabled
Enables Edit|Cut and Edit|Copy, even when there is no text selected.

Undo after save
Allows you to retrieve changes after a save.

Find text at cursor

Places the text at the cursor into the Text To Find list box in the Find Text dialog box when
you choose Search|Find. When this option is disabled you must type in the search text, unless
the Text To Find list box is blank, in which case the editor still inserts the text at the cursor.

Highlight URLs

If URLs highlighting is enabled and if the text that is displayed in the Code Editor contains
URLSs then they will automatically be highlighted. Please notice that if the URL is highlighted
then users can click on it and browse the corresponding Web location with the installed
browser.

Double click line

Highlights the line when you double-click any character in the line. If disabled, only the
selected word is highlighted.

Auto Indent mode

Positions the cursor under the first nonblank character of the preceding nonblank line when
you press Enter.

Backspace unindents

Alignsthe insertion point to the previous indentation level (outdentsit) when you press
Backspace, if the cursor is on the first nonblank character of aline.

TMT PASCAL

Developer Guide

Smart tab

Tabsto the first non-whitespace character in the preceding line. If Use Tab Character is
enabled, this option is off.

Disable dragging
Disables text-dragging feature.

Persistent blocks
Keeps marked blocks selected even when the cursor is moved, until a new block is selected.

Use syntax highlighting
Enables syntax highlighting. To set highlighting options, use the Colors page

Allow overwrite caret shape
Allows overwrite caret shape, when insert mode is disabled.

Enable group undo

Undoes your last editing command as well as any subsequent editing commands of the same
type, if you press Alt+Backspace or choose Edit|Undo.

Select text only
Limits a selection by the cursor to the end-of-line character.

Cursor beyond EOF
Positions the cursor beyond the end-of-file character.

Use system clipboard history
Allows the Code Editor to use the system clipboard.

Max horizontal pos
Specifies the maximum horizontal position in the Code Editor.

Foacesin tabs
Specifies the spaces number in the tabs.

Block indent
Specifies the number of spaces to indent a marked block. The default is 2.

Tab Sops
Sets the character columns that the cursor will move to each time you press Tab.

109

110

Programmer’s Reference

D.7 Editor Shortcuts

Shortcut Action or command

F1, Ctrl + F1 Topic Search

F3 Search|Search Again

F6 Displays the next window

Shift+F6 Displays the previous window

Ctrl+l Inserts atab

Ctrl+L Search|Search Again

Ctrl+J Displays the code templates box

Ctrl+N Insertsanew line

Ctrl+R Search|Replace

Ctrl+S File]Save

Ctrl+T Deletes aword right

Ctrl+Vv Edit|Insert

Ctrl+W Deletes aword left

Ctrl+Y Deletesaline

Ctrl+z Edit|Undo

Shift+Ctrl+Z Edit|Redo

End Movesto the end of aline

Home Movesto the start of aline

Enter Inserts a carriage return

Ins Turns insert mode on/off

Del Deletes the character to the right of the cursor

Backspace Deletes the character to the left of the cursor

Tab Inserts atab

Space Inserts a blank space

Left Arrow Moves the cursor left one column, accounting for the autoindent
setting

Right Arrow Moves the cursor right one column, accounting for the autoindent
setting

Up Arrow Moves up oneline

Down Arrow Moves down one line

Page Up Moves up one page

Page Down Moves down one page

Ctri+Alt+F Searches word at cursor

Ctrl+Left Arrow Moves one word | eft

Ctrl+Right Arrow Moves one word right

Ctrl+Home Moves to the top of a screen

Ctrl+End Movesto the end of a screen

Ctrl+PgDn Moves to the bottom of afile

Ctrl+PgUp Movesto the top of afile

Ctrl+Backspace Move one word to the right

Ctrl+Space Inserts a blank space

Ctrl+Enter Opens file at cursor

Ctrl+Tab Moves to the next page

Ctrl+Shift+l Indents Block

Ctrl+Shift+U Outdents Block

Ctrl+Shift+Y Deletesto the end of line

Shift+Tab

Inserts atab

Shift+Backspace
Shift+Left Arrow
Shift+Right Arrow
Shift+Up Arrow

Shift+Down Arrow
Shift+PgUp

Shift+PgDn

Shift+End
Shift+Home

Shift+Space
Shift+Enter
Shift+Ctrl+Tab

Ctrl+Shift+Left Arrow

Ctrl+Shift+Right
Arrow
Ctrl+Shift+Home
Ctrl+Shift+End
Ctrl+Shift+PgDn
Ctrl+Shift+PgUp
Ctrl+Shift+Tab

Alt+Backspace

Hint:

TMT PASCAL

Developer Guide

Deletes the character to the left of the cursor

Selects the character to the left of the cursor

Selects the character to the right of the cursor

Moves the cursor up one line and selects from the | eft of the
starting cursor position

Moves the cursor down one line and selects from the right of the
starting cursor position

Moves the cursor up one screen and selects from the left of the
starting cursor position

Moves the cursor down one line and selects from the right of the
starting cursor position

Selects from the cursor position to the end of the current line
Selects from the cursor position to the start of the current line

Inserts ablank space
Inserts a new line with a carriage return
Moves to the previous page

Selects the word to the left of the cursor

Selects the word to the right of the cursor

Selects from the cursor position to the start of the current file
Selects from the cursor position to the end of the current file
Selects from the cursor position to the bottom of the screen
Selects from the cursor position to the top of the screen
Moves to the previous page

Edit|Undo

When selecting, hold Alt to select a vertical block.

See dlso: Bookmarks

111

	Contents
	The TMT Pascal Language Description
	Features
	Implementation Issues
	Pascal Language Structure
	Types
	Declarations
	Expressions
	Statements
	Programs and Units
	Dynamic-Link Libraries (DLL’s)
	Procedures and Functions
	OOP Extensions
	Open Arrays
	User Defined Operators
	Built-in Assembler
	Standard Units

	Win32 Programming
	Writting Win32 GUI Applications
	Structure of Window Procedure
	Designing a Window Procedure
	Associating a Window Procedure with a Window Class
	Example of a Win32 GUI Application
	Writting Win32 Control Panel Applications
	Application Responsibilities and Operation
	Application Entry-Point Function

	Appendix
	Appendix A - Compiler Directives
	Conditional directives
	Switch and Parameter Directives
	Predefined Symbols

	Appendix B - Run-time Error Codes
	Appendix C - PMODE/W DOS Extender
	About PMODE/W
	Supported DPMI INT 31h functions

	Appendix D - IDE Overview
	Bookmarks
	Code Templates
	Compiler Options
	Directories
	Display
	Editor
	Editor Shortcuts

