
TMT Pascal
Multi-target Edition

Version 3.50 (Build 2.50)

2000

Programmer’s Reference

2
Programmer’s Reference

Contents

1 The TMT Pascal Language Description ... 8

1.1 Features ... 8

Overview ... 8
Compilation targets.. 8
Language extensions.. 8

1.2 Implementation Issues ... 9

Memory Organization.. 9
Calling Conventions .. 10
Limitations... 11

1.3 Pascal Language Structure... 11

Tokens and Identifiers ... 11
Reserved Words... 12
Operators and Delimiters... 12
Operator Precedence.. 13
Constants ... 13
Program Comments ... 14

1.4 Types ... 14

Boolean Types ... 15
Character Types... 15
Integer Types ... 16
Enumeration Types.. 16
Subrange Types ... 17
Real Types ... 17
Pointer Types... 17
Pointer Dereference ... 18
Array Types ... 18
String Types... 18
Set Types ... 19
Record Types... 19
File Types .. 20
Procedure Types .. 21
Object Types.. 22
Type Compatibility.. 22

1.5 Declarations... 22

Type Declarations.. 23
Label Declarations... 23
Constant Declarations.. 23
Variable Declarations .. 24
Local Block Declarations .. 25

1.6 Expressions.. 26

Arithmetic Operators ... 26
Boolean Operators ... 27
Set Operators ... 27
Relational Operators .. 27
Typecasts ... 28

TMT PASCAL
Developer Guide

3

Operator Precedence ..28

1.7 Statements..28

Assigments...28
Compound Statements ...29
Case Statement...29
For Statement ...30
Goto Statement...30
If Statement..31
InLine Statement..31
Repeat Statement ...31
While Statement...32
With Statement...32
Mem, MemW, MemL, and MemD ..32
Port, PortW and PortD ...33

1.8 Programs and Units..33

Units...33
Programs ..34

1.9 Dynamic-Link Libraries (DLL’s) ..35

About DLL’s..35
Using DLLs..36
Writing DLLs...37
Global variables in DLLs...38
Import Units ...38

1.10 Procedures and Functions ..38

Procedures and Functions Declaration...38
Forward Declaration ..39
External Declaration ..39
Interrupt Procedure ..40
Procedural Value..41
Using Statement as Procedure..42

1.11 OOP Extensions ...44

Object...44
Inheritance ...44
Object Syntax...44
Restrictions On Object Description ...45
OOP Scopes ...45
Public and Private declarations ..46
Virtual Methods ...47
Constructors ...47
Fail procedure ..48
Using New Procedure (OOP)...48
Desctructors ...48
Inherited reserved word ...49
Self argument ...49

1.12 Open Arrays ...49

1.13 User Defined Operators ...49

1.14 Built-in Assembler ...50

Asm Statement ...50
Assembler Procedure ...51
Code Procedure..52

4
Programmer’s Reference

Command Syntax .. 52
Assembler Labels .. 52
Assembler Prefixes .. 52
Assembler Opcodes ... 53
Assembler Registers .. 53
Assembler Opcode Mnemonics ... 54
Assembler Operand Expressions ... 59
Assembler Operands.. 59
Assembler Operators ... 60
Assembler Operator Precedence.. 61
Differences between 16- and 32-bit code .. 61

1.15 Standard Units ... 63

2 Win32 Programming.. 64

2.1 Writting Win32 GUI Applications .. 64

2.2 Structure of Window Procedure .. 64

2.3 Designing a Window Procedure .. 65

2.4 Associating a Window Procedure with a Window Class... 65

2.5 Example of Win32 GUI Application ... 66

2.6 Writting Win32 Control Panel Applications.. 67

2.7 Application Responsibilities and Operation .. 68

2.8 Application Entry-Point Function.. 68

CPL_DBLCLK.. 68
CPL_EXIT... 68
CPL_GETCOUNT .. 68
CPL_INIT.. 68
CPL_INQUIRE ... 69
CPL_NEWINQUIRE .. 69
CPL_SELECT ... 69
CPL_STOP.. 69

Appendix A - Compiler Directives ... 70

A.1 Conditional directives... 70

A.2 Switch and Parameter Directives .. 70

$A: Data Align Switch .. 70
$AC: Ada-Style Comments Switch ... 71
$AMD: AMD 3DNow! Assembler Instructions Switch.. 71
$B: Boolean Evaluation Switch... 71
$CC: C/C++ Style Comments Switch ... 71
$D: Debug Information Switch ... 72
$I: I/O-Checking Switch.. 72
$Include File Directive .. 72
$L: Link Object File Directive .. 72
$L: Local Symbol Information Switch .. 73
$MAP: Map File Generation Switch ... 73
$MMX: Intel MMX Assembler Instructions Switch ... 73
$OA: Objects and Structures Align Switch ... 73
$OPT: Full Optimization Switch ... 74

TMT PASCAL
Developer Guide

5

$OPTFRM: Stack Frame Optimization Switch ...74
$OPTREG: Register Optimization Switch...74
$P: Open String Parameters Switch ...74
$Q: Overflow Checking Switch ...74
$R: Range-Checking Switch..75
$R: Resource File...75
$S: Stack-Overflow Checking Switch ...75
$T: Type-Checked Pointers Switch ...76
$TPO: Typed Inc/Dec Operations Switch..76
$V: Var-String Checking Switch ...76
$W: Warnings Generation Switch ...77
$X: Extended Syntax Switch ...77

A.3 Predefined Symbols ..77

Appendix B - Run-time Error Codes ...78

Appendix C - PMODE/W DOS Extender ..80

C.1 About PMODE/W ...80

C.2 Supported DPMI INT 31h functions ...83

Function 0000h - Allocate Descriptors ..83
Function 0001h - Free Descriptor ..83
Function 0002h - Segment to Descriptor ...84
Function 0003 - Get Selector Increment Value..84
Function 0006 - Get Segment Base Address..84
Function 0007 - Set Segment Base Address ..85
Function 0008 - Set Segment Limit ...85
Function 0009 - Set Descriptor Access Rights...86
Function 000A - Create Alias Descriptor...86
Function 000B - Get Descriptor...87
Function 000C - Set Descriptor ...87
Function 0100 - Allocate DOS Memory Block ...87
Function 0101 - Free DOS Memory Block..88
Function 0102 - Resize DOS Memory Block ..88
Function 0200 - Get Real Mode Interrupt Vector ..88
Function 0201 - Set Real Mode Interrupt Vector...89
Function 0202 - Get Processor Exception Handler Vector ..89
Function 0203 - Set Processor Exception Handler Vector...89
Function 0204 - Get Protected Mode Interrupt Vector ..90
Function 0205 - Set Protected Mode Interrupt Vector ...90
Function 0300 - Simulate Real Mode Interrupt ...91
Function 0301 - Call Real Mode Procedure With Far Return Frame...................................92
Function 0302 - Call Real Mode Procedure With IRET Frame...93
Function 0303 - Allocate Real Mode Callback Address ..94
Function 0304 - Free Real Mode Callback Address ..94
Function 0305 - Get State Save/Restore Addresses ...95
Function 0306 - Get Raw Mode Switch Addresses ...95
Function 0400 - Get Version..96
Function 0500 - Get Free Memory Information...97
Function 0501 - Allocate Memory Block ..97
Function 0502 - Free Memory Block...98
Function 0503 - Resize Memory Block ...98
Function 0800 - Physical Address Mapping ..99
Function 0801 - Free Physical Address Mapping ..99
Function 0900 - Get and Disable Virtual Interrupt State ...99
Function 0901 - Get and Enable Virtual Interrupt State ..100

6
Programmer’s Reference

Function 0902 - Get Virtual Interrupt State... 100
Function EEFF - Get DOS Extender Information ... 100

Appendix D - IDE Overview... 102

D.1 Bookmarks.. 102
D.2 Code Templates (Options | Environment | Code Templates)...................................... 103
D.3 Compiler Options (Options | Compiler).. 104
D.4 Directories (Options | Directories).. 106
D.5 Display (Options | Environment | Display) ... 106
D.6 Editor (Options | Environment | Editor).. 108
D.7 Editor Shortcuts .. 110

TMT PASCAL
Developer Guide

7

About this guide
This document is a programmers’s reference for the TMT Pascal language. It includes Win32
Programming, Compiler Directives, Run-time Error Codes and the PMODE/W DOS
Extender.

Copyright © 1995-2000 by TMT Development Corporation. All rights reserved.

8
Programmer’s Reference

Chapter 1

The TMT Pascal Language Description

1.1 Features

Overview

The TMT Pascal compiler is a fast compiler for the Pascal language. The compiler emits 32-
bit code and supports many language extensions from Borland Pascal (BP), as well as more
powerful extensions.

TMT Pascal brings new life to the 32-bit MS DOS applications and will help you to create
your own Win32 and OS/2 applications.

Compilation targets

TMT Pascal allows easy building of the following targets:

− MSDOS 32-bit protected mode
− OS/2 presentation manager
− OS/2 console
− OS/2 full screen
− OS/2 DLL’s
− Win32 GUI
− Win32 console
− Win32 DLL’s

Language extensions

The TMT Pascal compiler supports a new enhanced dialect of the PASCAL language. This
dialect fully covers the Borland Pascal language and has additional powerful extensions such
as:

• C/C++ extensions support
• C++ and ADA-style comments
• Local declarations
• Multidimensional open arrays
• Operator overloading
• Unnamed procedural blocks
• MMX™ technology support

TMT PASCAL
Developer Guide

9

1.2 Implementation Issues

Memory Organization

The TMT Pascal compiler uses the TMTSTUB (based on WDOSX) and PMWSTUB (based
on PMODE/W) extenders for a protected-mode program.

The segment registers are not used in protected mode. Instead all address space is separated
into 4Kb pages.

You do not need to add a special _zero variable to get access to the physical addresses.

For example:

procedure clr_video(filler: char);
var
 i: Integer;
begin
 for i := 0 to 80 * 25 - 1 do
 Mem[$B8000 + i * 2] := filler;
end;

This procedure fills the video memory of the VGA adapter with the filler symbol.

Note that the linear address $B8000 is used as the physical address - not the segment address
$B800.

Some other special variables are described in the SYSTEM unit. The _psp variable contains
the logical 32-bit address of the PSP of the program, and the _environ variable contains the
environment address.

Although you can access the interrupt vectors by using this method, we do not suggest doing
this.

Also keep in mind that MS-DOS interrupt handlers use memory addresses in the 1st Mb of
physical memory while your program and its data are loaded beyond the 1st Mb. The
TMTSTUB intercepts and correctly handles some, but not all, calls to MS-DOS. Thus, if you
are using Intr or MsDos calls, or call MS-DOS from the assembler, you will need to modify
the code.

Absolute memory addressing Mem, MemW, MemL, and MemD pseudo-arrays may be used
in BP-compatible manner:

var x: type absolute seg:offs
Mem[seg:offs]

Here the effective address is computed as seg*16+offs. The Ptr(seg, offs) function works
similarly. The Seg(v) function still always returns 0.

These new functions should substantially simplify the conversion of the programs that use
absolute addressing.

An example of using these functions can be found in file
TMTPL\SAMPLES\MSDOS\FLAME\FLAME.PAS

See also: PMODE/W API

10
Programmer’s Reference

Calling Conventions

Calling conventions match those in Borland Pascal with the following differences:

• all parameters use 4 bytes on the stack, or a multiple of 4 (BP:2)
• all procedures must preserve the contents of registers ebx, ecx, edx, ds, and es!
• the direction bit should be cleared after the exit from a procedure, if it has been modified

by the procedure.

To call external procedures written for different languages, TMT Pascal provides the conv
operator. The conv operator should be used in the function (procedure) declaration to define a
calling convention, which in turn will be used to call a declared function (procedure).

Syntax:
[function] conv conv_method FunctionName [Arguments] :
ReturnType;

Where conv_method is a constant, which defines the calling conversion to be used. The
System units contains the following constants to define conventional method:

const
// Base calling conventions to construct any possible
convention
 arg_reverse = [0];
 arg_proc_16 = [2];
 arg_noregsave = [3];
 arg_no_drop_1 = [4];
 arg_no_drop_2 = [5];
 arg_no_drop_3 = arg_no_drop_1 + arg_no_drop_2;
 arg_no_drop_4 = [6];
 arg_no_drop_5 = arg_no_drop_1 + arg_no_drop_4;
 arg_no_drop_6 = arg_no_drop_2 + arg_no_drop_4;
 arg_no_drop_all= [4..6];
 arg_IO_test = [8];
 arg_save_edi = [9];
 arg_save_esi = [10];
// Composite calling conventions
 arg_pascal = arg_noregsave;
 arg_stdcall = arg_reverse + arg_noregsave + arg_save_edi +
 arg_save_esi;
 arg_cdecl = arg_reverse + arg_no_drop_all;
 arg_os2 = arg_cdecl + arg_noregsave;
 arg_os2_16 = arg_proc_16 + arg_no_drop_all +
arg_noregsave;

The arg_pascal convention passes parameters from left to right; that is, the leftmost parameter
is evaluated and passed first and the rightmost parameter is evaluated and passed last. The
arg_cdecl, arg_stdcall, arg_os2 and arg_os2_16 conventions pass parameters from right to
left. For all conventions except arg_cdecl, the procedure or function removes parameters from
the stack upon returning. With the arg_cdecl convention, the caller must remove parameters
from the stack when the call returns. The register convention uses up to three CPU registers to
pass parameters, whereas the other conventions always pass all parameters on the stack. The
calling conventions are summarized in the following table.

Directive Order Cleanup Registers
arg_pascal Left-to-right Function No
arg_cdecl Right-to-left Caller No
arg_stdcall Right-to-left Function No

TMT PASCAL
Developer Guide

11

The arg_pascal and arg_cdecl conventions are mostly useful for calling routines in dynamic-
link libraries written in C, C++, or other languages. The arg_stdcall convention is used for
calling Windows API routines.

Limitations

1) Not implemented are Mark and Release.

2) The Inline operator is implemented in a partial form:

Inline(byte/byte/...);

References to variables/constants are not allowed.

3) Import of object modules does not support all 32-bit object formats. We recommend using
TASM which is fully supported, except the usage of SEG addresses.

4) Complex type is not implemented.

5) Constants of Extended type are not supported.

6) The reserved word Packed has no effect (it is ignored) in TMT Pascal. Use $OA: Objects
and Structures Align Switch to switch on or switch off objects and structures alignment.

1.3 Pascal Language Structure

TMT Pascal programs are to be written either with the TMT Pascal IDE editor or an editor of
your choice. The source files created by your editor must be standard ASCII text. All
characters within the range of 32 to 127 (decimal) are valid. Control characters (characters
below 32 decimal) are treated as spaces.

Tokens and Identifiers

Contiguous characters in a source file, not including the space character (32), are called
tokens. Tokens are separated by any number of spaces and control characters (in the range of
0 to 32 decimal). For instance in the following segment,

Writeln(‘Hello, World!’);

there are five tokens: the identifier Writeln, left and right parentheses, the semicolon and the
string ‘Hello, World!’. Programs are sequences of tokens that tell the compiler what code to
generate. There are several different types of tokens; for instance, identifiers, reserved words,
operators, and so on. Each type of token is explained below in this manual.

Identifiers are tokens that have a special meaning in TMT Pascal. Identifiers begin with a
letter (A-Z or a-z) or underscore, and may contain letters, underscores, and digits (0-9). The
maximum length of an identifier is 255 characters, however only the first 63 characters are
significant. TMT Pascal is not case sensitive, therefore the identifiers WriteLn, writeln, and
WRITELN are all identical. Reserved words, procedure names, and variables, are examples of
identifiers.

12
Programmer’s Reference

Reserved Words

Reserved words are identifiers with a specific meaning in TMT Pascal. Their meaning cannot
be changed or altered in any way. The following is a list of TMT Pascal reserved words:

and goto program
array if record
asm implementation repeat
begin in set
case inherited shl
const inline shr
constructor interface string
declare label then
destructor library to
div mod type
do nil unit
downto not until
else object uses
end of var
exports or virtual
file overload while
for packed with
function procedure xor

The following table shows TMT Pascal’s standard directives. Directives are used only in
contexts where user-defined identifiers can’t occur. Unlike reserved words, you can redefine
standard directives, but we advise you not to.

Absolute Declare os2call
Assembler Export name
Cdecl external virtual
Code Forward stdcall
Conv Index

Operators and Delimiters

Operators and delimiters are tokens that also have special Pascal meanings. The following is a
list of valid operators and delimiters along with their meanings:

token Usage
@ Address operator
^ Pointer dereference operator
+ Addition or set union operator
- Subtraction or set difference operator
* Multiplication or set intersection operator
/ Real division
div Integer Division
mod Modulus
() Parentheses
[] Subscript delimiter, set constants
= Assignment operator
. Field selection operator
, Separator
.. Range separator

TMT PASCAL
Developer Guide

13

: Type separator or case separator
= Equal operator
< Less than operator
> Greater than operator
<= Less than or equal operator
>= Greater than or equal operator
<> Not equal operator
and Logical AND
in Set operator
not Logical NOT
or Logical OR
shl Bit shift left replacing right side with 0’s
shr Bit shift right replacing left side with 0’s
xor Logical XOR

Operator Precedence

Operators allow for the manipulation of certain types of identifiers. For expressions with three
or more operands (i.e. 5 *4 + 2), rules of precedence apply. The order of precedence for
operators is as follows:

Operator type
Unary Operators @, not
Multiplying Operators *, / , div, mod, and, shl, shr
Adding Operators +, -, or, xor
Relational Operators =, <>, <, >, <{}=, >{}= , in

Operations are performed from left to right while operations of higher precedence are
performed first. For more about operators see the chapter on Expressions.

Constants

A constant declaration (const) is an identifier that marks a value that can’t change. TMT
Pascal provides two standard types of constants:

! Integer and Real Number Constants

Integer constants are values that can be represented in either decimal (base 10) or
hexadecimal (base 16). A decimal number is a string of digits (0-9) that may be preceded
with a plus or minus sign. A hexadecimal number is preceded by a dollar sign ($) followed
by a string of digits and the characters A through F. The following are valid integer
numbers:

100 -255 100500 $FE $ABCD

Real constants are numbers that contain an integer portion, a fractional portion, and an
exponent. Use real constants when the fraction of a number is necessary. The syntax for
real constants is as follows:

[+|-] digits [.digits] [E [+|-] digits]

The letter E represents the exponent part of the real number. Exponents are powers of ten.
Both integer and real constants may not contain space characters. The following are valid
real constants:

1.0 -205.13 9019.31E100 40.71E-10

14
Programmer’s Reference

The current version of TMT Pascal compiler does not provide constants of
Extended type.

! String Constants

String constants are strings of ASCII characters preceded by and followed by a single
quote (‘). Use two single quotes (“) to represent a single quote within a string. A string
may also be constructed with the number symbol # or the caret symbol ^. For more
information see the definition of Character types. The maximum size of a string constant is
255 characters. The following are valid examples of string constants:

‘This is a string’
^G’A Bell will sound’
#13#11’New Line’
‘Where”s the program’

See also the chapter on Constant Declarations.

Program Comments

A good programmer knows that comments within a source file can be very helpful. Comments
are delimited by «{« and «}» or «(*» and «*)». All comments are ignored by TMT Pascal
during compilation. Comments cannot contain nested comments that use the same delimiters.
Below are examples of traditional Pascal comments:

{ This is a comment }
(* Another comment *)
(* This comment is { nested } *)
{ Another (* nested *) comment }
(* An invalid (* comment *) *)

In addition to traditional comments, TMT Pascal supports C/C++ and Ada-style end-line
comments. These begin with a double hyphen and span until the end of the line. For example:

/* This is C-style comment */
Space := ‘ ‘; -- initialize filler char
FillChar(Ptr ($A0000), 64000, 0); // clear VGA video memory

Remarks:
A comment that contains the dollar sign ($) immediately after opening {, (* or /* is a compiler
directive. A mnemonic of the compiler command follows the $ character.

Starting from version 3.0, TMT Pascal does not support Ada-style comments by
default. We are thinking about completely removing support for Ada-style comments
in the future and recommend that you replace all Ada-style comments in your

programs by traditional Pascal or C/C++ styled comments. Use the {$AC+} compiler switch,
if you want to compile old sources with TMT Pascal 3.0 (see $AC: Ada-Style Comments
Switch).

1.4 Types

A type defines the kinds and ranges of values that constants, variables, procedures, and
functions may contain. Types also define the size of, as well as the operations on such
identifiers.

TMT PASCAL
Developer Guide

15

TMT Pascal comes with a powerful set of predefined types and it is possible to define new
types for constants and variables.

There are five basic type groups that are available under TMT Pascal. Each group contains
types with similar properties. They are the following:

Scalar Types.
Scalar types consist of an ordered set of values. Scalar types include all ordinal types as well
as real types. Characters are also of scalar type.

Ordinal Types.
Ordinal types are a subset of scalar types. Ordinal types include boolean, char, enumeration,
and integer. Reals are not ordinal types.

Procedure Types.
Procedure types contain the address in memory of a procedure or function.

Pointer Types.
Pointer types store the address of a location in memory. Pointer types can be used to address
dynamic variables.

Structured Types.
Structured types are types that contain several components. Each component can be accessed
separately or the entire structure can be treated as a whole. Examples of structured types
include strings, arrays, records, sets, files, and objects.

Boolean Types

A boolean type is an ordinal that can hold one of the two values: True, False. Expressions that
evaluate to a logical “yes” or “no” are of boolean type. if, while, repeat and other control
statements work with boolean expressions. The following code fragment,

while not KeyPressed do;

causes program execution to pause until a key is pressed on the keyboard. KeyPressed is a
procedure declared in the Crt unit. The expression not KeyPressed results in a boolean value
that determines whether the while loop is executed. not performs a logical NOT on the
boolean returned by KeyPressed. The constants True and False are declared in the System unit
as boolean.

The evaluation model is controlled through the $B compiler directive. The default state is
{$B-}, so the compiler generates short-circuit evaluation code. In the {$B+} state, the
compiler generates complete evaluation.

Character Types

Character types require one byte of storage. They may consist of any ASCII character, for
instance, ‘A’ through ‘Z’, ‘0’ through ‘9’, or any control code. The code fragment below
shows various ways to initialize character type variables.

var
Number, Alpha, Bell, EofMarker: Char;

begin
 Number := ‘5’;
 Alpha := ‘a’;
 Bell := ^G;
 EofMarker := #27;
end.

16
Programmer’s Reference

A character is normally delimited by two single quotes. However there are two other methods
of representing characters as seen in the example above: the caret symbol (^) and the number
symbol (#).

Use the caret to represent control codes—characters between 0 and 31 on the ASCII table. ^G
stands for character number 7 because G is the seventh letter of the alphabet. When ^G is used
during output, the computer’s bell will sound.

Use # to represent any ASCII character. As in the example above, the end of file character,
which is defined as character number 27 on the ASCII table, is assigned to the variable
EofMarker. Note that #27 is the same as ^[.

Integer Types

Integer types may contain both positive and negative integer values. Integer values may range
from -2,147,483,648 to 2,147,483,647 and other ranges are also supported. Each integer
variable requires two bytes of storage. The following is a list of additional predefined integer
types.

Type Range Size
Byte 0 to 255 1
ShortInt -128 to 127 1
Integer -32,768 to 32,767 2
SmallInt -32,768 to 32,767 2
Word 0 to 65,535 2
LongInt -2,147,483,648 to 2,147,483,647 4
DWORD 0 to 4,294,967,295 4
LongWord 0 to 4,294,967,295 4
Cardinal 0 to 4,294,967,295 4

On the Intel 386+ CPU’s, operations performed with Longints (4 bytes) are faster than
operations with integers (2 bytes). This is due to the fact that registers on the 32-bit processors
are 32 bits wide.

Enumeration Types

Enumeration types are ordinals that represent a set of values specified by a list of identifiers.
Enumeration types are defined as follows:

identifier [,identifier]

Each identifier is a constant of the new type. Identifiers in enumeration types are assigned
values with the first equal to zero, the second equal to one, and so on. For instance, the
following enumeration type contains the seven days of the week:

= (Sun, Mon, Tue, Wed, Thu, Fri, Sat);

In type Week, Sun has the value of zero, Mon has the value of one, Tue has the value of two,
and so on.

Enumerations are limited to 256 elements.

TMT PASCAL
Developer Guide

17

Subrange Types

Subrange types restrict the values allowed for a type. The subrange must consist of ordinal
type constants and the components of the range must be of the same type. Subranges are
defined as follows:

expression .. expression;

where the first expression is the lowest value of the range and the second expression is the
highest value. The following are examples of subranges:

type

Digits = ‘0’..’9’;
Values = 0..$F;

Real Types

Real data types contain integer values as well as a fractional portion. Also known as floating
point numbers, each real type consists of a significant, the fractional part, and an exponent,
which is a power of ten.

TMT Pascal follows the IEEE standard for floating point number representation. There are
four real data types available under TMT Pascal: real, single, double, and extended.

Real Types.
Real types range from 2.9 x 10E-39 to 1.7 x 10E38 with 11 to 12 significant digits. Each
requires 6 bytes for storage. The internal format of TMT Pascal’s real type differs to
Borland’s.

Single Types.
Single types range from 1.5 x 10E-45 to 3.4 x 10E38 with 6 to 7 significant digits. Each
requires 4 bytes for storage.

Double Types.
Double types range from 5.0 x 10E-324 to 1.7 x 10E308 with 15 to 16 significant digits. Each
requires 8 bytes for storage.

Extended Types.
Extended types, the largest of all the real types, range from 1.9 x 10E-4951 to 1.1 x 10E4932
with 19 significant digits. Each requires 10 bytes for storage.

Pointer Types

Pointer types contain the address of an identifier or dynamically allocated memory. Pointer
types require a double word (32 bits for storage). While in protected mode, pointers contain a
32-bit offset and the segment is assumed to be the data segment. In this way pointers are
similar to the integer type Longint. To allocate dynamic variables see the chapter on Heap
Management. A pointer type must point to specific type. Pointer types are defined as follows:

^Typename

The pointer type can be assigned the constant nil. When nil is assigned, the pointer does not
refer to any location in memory. Pointer is a predefined pointer type that is untyped. Pointer is
compatible with all other pointer types.

TMT Pascal supports the following arithmetical operations on pointers.

Examples:

18
Programmer’s Reference

p2 := p1 + 1000;
p1 := p2 - $FF;
inc(p1, 15);
dec(p2);

Where p1 and p2 are variables of Pointer Type.

Pointer Dereference

Dereferencing is used to refer to the object which a pointer type points to. Use

Variable^

to dereference a pointer type. It is important to note that pointer types must point to a specific
memory location before they are dereferenced. Otherwise, the data pointed to is undefined.

Array Types

array types contain a sequence of components of a different type. Each component is
referenced by an index which also has a specific type. Arrays are defined as follows:

array [Ordinalindex [,OrdinalIndex]] of Arraytype;

where OrdinalIndex is one of the following ordinal types: integer, char, enumeration,
Boolean, or subrange. Arraytype can be of any type, including another array type. The
following are examples of array types:

array [Boolean] of Char;
array [Char] of Integer;
array [1..255] of Double;

Subscripts are used to refer to a component of an array. Subscripting an array is specified as
follows:

Arrayname [expression [,expression]];

where expression is of the same type as the index. Expression must also lie within the range of
the index. A runtime error is generated if expression lies outside the index range and range
checking is turned on, $R+.

String Types

Strings are arrays of characters. The maximum size of a string type is 255 characters. In the
following example two string variables are declared, one with a specific size, the other with
the maximum size of 255 characters.

S1: String[100];
S2: String;

The variable S1 holds only the first 100 characters of a string. S2 may contain up to 255
characters. TMT Pascal reserves one byte, which contains the size of the string. This size byte
is reserved in the byte that precedes the first character of a string. For instance,

S2 := ‘Hello World’;

is represented in memory as

TMT PASCAL
Developer Guide

19

#11,Hello World

All string operations, as well as functions and procedures that return or modify strings,
truncate strings that exceed 255 characters.

Set Types

Set types specify a subset of a set of values. The ordinal value of the set elements must range
between 0 and 255.

! Characters
! Enumeration type
! Positive integer values
! Subrange of the above three
! Ordinal types

Each value in a set is defined by one bit, therefore each value is similar to a Boolean. The
following are examples of sets:

type

set of 0..7;
set of ‘0’..’9’;
set of Char;
set of Word; - This cannot be handled by BP.

Record Types

Record types are structures that contain components of different types. Each component of a
record is called a field. Variant sections are parts of records and can have multiple definitions.
Record type are defined as follows:

record
 Fieldlist
end

where Fieldlist is defined as:

[[Fixedpart] | [Fixedpart;] [Variantpart]];

where Fixedpart is:

Field [; Field];

where Field is

identifier [,identifier] : Identifiertype;

Variantpart is defined as follows:

case
 [identifier:] Typename of Variant [;Variant];

where Variant is:

Caserange [,Caserange] : (Fieldlist);

where Caserange is:

expression [..expression];

20
Programmer’s Reference

With a proper understanding of TMT Pascal record types, very powerful types can be defined.
The following are examples of record types:

type
 Coordinate = record
 x, y: Integer;
 end;
 Values = record
 case Way: Boolean of
 True: (RValue : Extended);
 False: (IValue : Longint);
 end;

To reference a field of a record specify the record variable followed by a period (.) followed
by the field name. The following refers to the fields of Coordinate declared above:

Coordinate.x
Coordinate.y

File Types

File types are structures that contain components of any type except another file type. File
types are defined as follows:

File [of Componenttype];

If of is not specified and component types are not indicated then the file is untyped. Untyped
files are used to access files regardless of their structure. Text file types refer to a file of
ASCII characters grouped in lines. Text is a predefined type.

The record definitions used internally by TMT Pascal are also declared in the System unit.

TFileRec is used for both typed and untyped files.

type TFileRec = object

 magic : ^TFileRec;
 name : string;
 handle : Longint;
 rec_len : Longint;
 state : %flags;
 rd_proc,
 wr_proc : function (F: Longint; Buf: Pointer; Len: Longint;
var Act: Longint): Longint;

procedure check_magic;
procedure check_opened;
procedure check_readable;
procedure check_writeable;
procedure io_error(code: Integer);

end;

PFileRec = ^TFileRec;

TTextRec is the internal format of a variable of type text.

type TTextRec = object(TFileRec)

buffer : array [0..63] of Char;
index : Longint;
len_buf : Longint;
max_buf : Longint;
buf_adr : Pointer;
function Eof: Boolean;

TMT PASCAL
Developer Guide

21

procedure init;
procedure fill_buf;
procedure fill_chr;
procedure skip_spaces;
procedure get_n_char(n: Integer);

end;

PTextRec = ^TTextRec;

Internal Type %flags is declared as:

type %flags = set of %file_state;

where %file_state is:

type %file_state =
(
 %file_readable, //00h
 %file_writeable, //01h
 %file_opened, //02h
 %file_assigned, //03h
 %file_eof, //04h
 %file_text, //05h
 %file_file, //06h
 %file_fileof, //07h
 %file_tty, //08h
 %file_special, //09h
 %file_settextbuf //0Ah
);

Procedure Types

Procedure types contain the address of a procedure or function. Procedure types are followed
by blocks of data and code and are defined as follows:

procedure identifier [(Parameterlist)]}

or

function identifier [(ParameterList)] : ReturnType}

ReturnType is the type of value returned by the function. ParameterList is defined as:

Parameter [;Parameter]}
where Parameter is:

[var] identifier [,identifier] : Typename}

var specifies a variable parameter. var parameters are passed by reference as opposed to
being passed by value. The following are examples of procedure types:

procedure PrintAt(X, Y: Integer; S: String);
function Max(Value1, Value2: Integer): Integer;
procedure GetDir(Driver: Byte; var S: String);

Note that unlike pointers, procedure types occupy 8 bytes. Besides the address of the
procedure proper, the local frame is stored. This allows the forming of procedure

types out of local procedures.

22
Programmer’s Reference

Object Types

Object types are similar to record types in that they contain components of different types.
However, unlike records, objects may contain methods and be inherited. The full description
of object types can be found elsewhere (see the OOP Extensions chapter.)

Type Compatibility

There are three levels of type compatibility. Each level along with its restrictions is listed
below in order, from the most restrictive to the least restrictive.

Equivalent Types.
Two types are equivalent only if they are both defined from the same type declaration. That
declaration must be one if the following:

- A named type declared by a type declaration.
- A predeclared type.
- An unnamed type used in a declaration.

Compatible Types.
Two types are compatible if one of the following apply:

- They are equivalent.
- One type is a subrange of another.
- Both are subranges of the same type.
- Both types are integers.
- Both types are reals.
- Both types are strings.
- One is a char or array of char and the other is a string.
- Both are set types and their base types are compatible.
- Both are arrays of char with the same length.

Assignable Types.
A type is assignable to another type if one of the following apply:

- Both types are compatible.
- Assignment of an integer type to a real type.
- Assignment of a char type to a string type.
- An array of characters less than 256 characters to a string.
- Both procedure types have the same parameters.

1.5 Declarations

The name of each identifier must be declared in your source code. By declaring an identifier
to be of a particular type, such as a variable, or constant, you define its size and attributes.

Pascal is a block structured language. Each program, unit, procedure and function defines a
block. Blocks can be nested creating blocks within blocks. The block structure effects the
interpretation of identifiers such as constants, variables, types, and so on. Identifiers can have
different meanings depending upon which block is referenced.

When an identifier is declared it is defined from the point of its declaration to the end of the
inner most block that contains the declaration. This is the scope of the identifier. Redefinition
of an identifier is not allowed within the same block in which it was declared. Only in nested
blocks may an identifier be redefined. However in this case the new identifier does not refer to
the old identifier. In fact the old identifier is hidden until the end of the nested block.

In addition to the traditional Pascal syntax, TMT Pascal also allows local block declarations.
These are described below in the manual.

TMT PASCAL
Developer Guide

23

An identifier may not be referenced prior to its declaration, with one exception. A type name
can be used as the base type of a pointer if the name is then declared in the type declaration
that contains the reference. For instance:

type

CoordPtr = ^Coordinate;
Coordinate = record;
 x, y : Integer;

end;

As you can see Coordinate is referenced prior to its declaration. The above declaration is
valid due to the fact that Coordinate is declared in the same type declaration as CoordPtr.

There are several declarations possible under TMT Pascal. They include:

! Type Declarations
! Label Declarations
! Constant Declarations
! Variable Declarations
! Local Block Declarations

Type Declarations

Type declarations are preceded by the Type reserved word.

Type identifier = Identifiertype;

Identifier is the actual name of the new type you define. Identifiertype is the type of identifier.
Identifiertype can be on of the following:

Another Type String Pointer File
Subrange array set function
Enumeration record procedure Text

Some examples of type declarations are:

type

 Float = Extended;
 Int = Integer;
 Filename = array [0..8] of Char;
 Fnameptr = ^Filename;
 Seasons = (Winter, Spring, Summer, Autumn);

Label Declarations

TMT Pascal statements may be labeled with one of two types of labels. A label can either be a
positive integer number (0...2147483647) or an identifier. Before using labels in your code, a
label must be declared. A label declaration is preceded by the label reserved word.

label identifier [,identifier];

Constant Declarations

There are two types of constants and TMT Pascal interprets them in different ways.

24
Programmer’s Reference

Constants that are declared without a type may not be changed in the program. Constants that
are typed are the same as variables (described below), except that they contain an initial
value. These constants may be changed in the program. A constant declaration is preceded by
the const reserved word.

const identifier [:IdentifierType] = expression;

Identifier is the actual name of the constant defined. IdentifierType, which is optional,
specifies the type of the constant. Again, if a type is specified, the constant is the same as a
variable with an initial value. Expression is assigned to the constant and must be evaluated at
compile time. The following are untyped constants and may not be modified:

const

Digit = ‘0’..’9’;
MaxSize = 100;
Msg = ‘This is a string constant’;

Typed constants may be of any type except for file, procedure, or function. Some examples of
typed constants are:

type
 Coordinate = record
 x,y: Integer;
 end;

const
Originpos: Coordinate = (x:0; y:0);
Name : String = ‘Hello World!’;
StrSize : Integer = 100;
Ary : array[False..True] of Byte = (10,15);

See also: Integer and Real Number Constants, String Constants

Variable Declarations

Variables store data during program execution. A variable declaration is preceded by the var
reserved word.

var identifier [,identifier]: IdentifierType;

Identifier is the actual name of the variable defined. IdentifierType specifies the type of the
variable. Variables, unlike constants, are not initialized. Their content prior to initialization is
undefined. It is possible to specify the absolute address of a variable. Following the
Identifiertype specify the Absolute reserved word.

var

identifier [,identifier]: IdentifierType absolute address;

Address may be either an identifier or an integer number indicating an offset. If Address is an
identifier then TMT Pascal computes it’s offset. absolute maps the variable to the address
following the absolute statement. This identifier must be declared prior to using absolute. If a
variable is the absolute of another, both address the same data however the types may be
different. The following are examples of variable declarations.

const

BuffSize = 900000; // 900K

var

HugeBuff : array [0..BuffSize] of Char;
i,j,k,l : Integer;

TMT PASCAL
Developer Guide

25

Buffptr : Longint;
p : Pointer absolute Buffptr;
Alpha : Char;

The absolute may refer to fields of records and objects. Also, the address of a global
record/object field can be used within the initialization of typed constants. Furthermore one
can use recursive initialization:

type rec = record

next: ^rec;
buffer: array [1..10] of char;
buf_adr: pointer;

end;

const cyclic: rec = (next: @cyclic; buf_adr: @cyclic.buffer);

Local Block Declarations

It is very often necessary to declare a local variable with a short life-span. One has to do this
at the declaration part of a program or in the procedure body. This is not always convenient,
especially if there is a huge program with a complicated algorithm. For that case a special
construction has been added in TMT Pascal. It is called a Local or Nested Block. Such a block
is an ordinary compound statement which begins with the new reserved word declare and
consists of two parts - declaration and execution:

declare
 <declaration part>
begin
 <execution part>
end;

This statement can be used in any place where a structured statement can be placed.

Example:
program DeclDemo;
var
 b: Integer;
begin
 declare // first local block
 var
 a: Integer;
 procedure pr_int(a: Integer);
 var
 i: Integer;
 begin
 for i := 1 to a do
 declare //second local block
 var
 k: Integer;
 begin
 k := a div i;
 Writeln(a, ' div ', i, ' = ', k);
 end;
 end;
 begin
 a := 1;
 Writeln(a);

26
Programmer’s Reference

 b := 10;
 pr_int(b);
 end
end.
This example contains two local blocks: one of them in the program body and another in the
routine body. The first local block declares variable a and procedure pr_int, the second
declares one local variable k. It should be understood that the scope of ‘a’ and pr_int is the
interior of the “first local block,” and the scope of k is the interior of the “second local block.”

1.6 Expressions

Expressions are constructs made up of operators and operands. Expressions work with
existing data and return new data. In TMT Pascal there exist two types of operations, unary
and binary. Unary operations work with one operand and binary operations work with two.
Regardless of the operator, operands may be constants, variables, data returned by another
operator, or data returned by a function call. Operators can be grouped according to the types
they operate on. There are five groups of operators: integer, real, Boolean, set, and relational.

Here is a description of the operator groups:

! Arithmetic Operators
! Boolean Operators
! Set Operators
! Relational Operators
! Typecasts
! Operator Precedence

Arithmetic Operators

Standard arithmetic operators listed below.

Operator Operation
 @ Pointer formation
 + Unary sign identity
 - Unary sign negation
 + Addition
 - Subtraction
 * Multiplication
 Div Integer division
 / Real division
 Mod Integer remainder
 And Logical AND
 Xor Logical XOR
 Not Logical NOT
 Or Logical OR
 Shl Shift bits left
 Shr Shift bits right

During binary operations both operands must be of compatible type. If the operands are of
compatible type then the operation results in the same type of the operand. If the types are
different then the result is the larger type.

For integer operations, operands are converted to Longint and results are of the same type as
the destination type. Longint or 32 bit operations are faster on the 80386 and 80486.

TMT PASCAL
Developer Guide

27

During real operations, operands are converted to extended type and results are of the same
type as the destination.

Boolean Operators

Boolean operators include logical AND, NOT, OR, and XOR. The operation of each is
summarized below:

Operator Logical Operation
 AND Conjunction
 NOT Negation
 OR Disjunction
 XOR Exclusive Disjunction

Boolean expressions that evaluate to True return a value of one. Boolean expressions that are
False result in a zero value.

Set Operators

Set operators are defined as follows:

Operator Meaning Operation
 + Union Yields elements in either A or B
 - Difference Yields elements in A but not in B
 * Intersection Yields elements in both A and B

Relational Operators

Relational operators perform arithmetic, literal, and set comparisons. All relational operations
result in a Boolean type. Relational operators include:

Operator Meaning Applicable types
 = Equal integers, reals, booleans,
 chars, enumerations, strings,
 sets, pointers
 < Less than integers, reals, boolean,
 char, enumerations, strings,
 pointers
 > Greater than integers, reals, boolean,
 chars, enumerations, strings,
 pointers
 <= Less than or equal, integers, reals, booleans,
 set inclusion chars, enumerations, strings,
 pointers
 >= Greater than or equal, integers, reals, booleans,
 set inclusion chars, enumerations, strings,
 pointers
 <> Not equal integers, reals, booleans,
 chars, enumerations, strings,
 sets, pointers
 In Membership A set type on the right and
 the set's base type on the

left

28
Programmer’s Reference

Typecasts

Typecasts allow operands of one type to be converted to another type. Typecasts are allowed
on either values or variables. Typecasts on values are restricted to ordinal and pointer types.
The only restriction on typecasts on variables is that the sizes of both types must be the same.
The following are examples of typecasts.

Integer(‘0’)
Boolean(1)
Wordptr(@BuffPtr)
Char(27)
Longint(@BuffPtr)}

Operator Precedence

For expressions with three or more operands (i.e. 2 - 244 / 4), rules of precedence apply. The
order of precedence for operators is listed from highest to lowest:

Operator Type Operator
Unary Operators @,Not
Multiplying Operators *,/,Div,Mod,And,Shl,Shr
Adding Operators +,-,Or,Xor
Relational Operators =,<>,<,>,<=,>=,In

Operations are performed from left to right while operations of higher precedence are
performed first. For instance, the following expression:

7 + 4 * 2

is not the same as:

(7 + 4) * 2

Since multiplication has a higher precedence than addition, multiplication is performed first
followed by addition. Use parenthesis to separate operations that you want to be performed
first.

1.7 Statements

A statement indicates the action a program performs. Statements are separated by semicolons
(;). Statements may be preceded by a label which consists either of an identifier or an
unsigned integer constant.

Assigments

An assignment assigns a value to a variable. An assignment takes the following form:

variable := expression;

where the value returned by expression is stored in variable. The type of the value returned by
expression must be compatible with the type of variable. If variable appears in expression, its
value is the value prior to the assignment. The following are examples of assignments:

const
 Letter = 'A';
var

TMT PASCAL
Developer Guide

29

 Alpha : Char;
 Value, i : Integer;
 l : Longint;
 s : String;
begin
 Alpha := Letter;
 s := 'A string variable';
 Value := $643F;
 i := 2675;
 l := 200 + (Value * i);
end.

Compound Statements

Compound statements are comprised of single statements preceded by begin and followed by
end. Compound statements take the following form:

begin
[statement [; statement]]

end

Compound statements allow one to place two or more statements wherever a statement is
called for within another statement.

Case Statement

The case statement selects from a list of statements basing it’s decision on the value of an
expression. case statements take the following form:

case expression of
 Selector : statement
 [else statement]
end;

where expression is a value of ordinal type. The case expression value is matched against
each Selector. If a match exists the statement following the matching Selector is executed.
Control is then transferred out of the case. If no Selector matches the case expression then
control is passed to an optional else clause. Selector must evaluate to a constant at compile
time and is defined as:

expression [..expression] [,expression [..expression]]}

if .. is specified followed by another expression the case applies to the entire range
between the first expression and the second expression. The following is an example of the
case statement:

case Int of
 5 : WriteLn('Int is 5');
 7..12,15: WriteLn('Between 7..12 or 15');
 else begin
 WriteLn('Undefined.');
 GetNextInt;
 end;
end;
Performance for large case statements improves if the most common subcases are listed first.

30
Programmer’s Reference

For Statement

The for statement allows for repetitive execution of one or more statements. for executes a
loop for a predetermined number of iterations. for statements take the following form:

for variable := expression to | downto expression
 do statement

where variable must be of ordinal type. The first expression following variable is the initial
value that is assigned to variable and the second expression is the limit on the range of values
assigned to variable. Both expressions must be of compatible type.

The to or downto clause specify specifies whether a variable is incremented or decremented
after each iteration of the loop. If to is specified, the variable is incremented until it hits the
limit of the second expression. downto decrements variable until it reaches the lower limit of
the second expression.

The following are examples of for loops:

for i := 1 to 100 do
begin
 WriteLn(i);
 Intarray[i] := i + 4;
end;

for x := 5 downto 2 do
 WriteLn(x);

A for loop is not executed if the first expression is greater than or less then the second
expression depending upon whether a to or downto was specified. For instance the following
for loop is not executed:

for i := 5 to 4 do

WriteLn(‘Will never output this string!’);

For a loop, the index variable must either be global or local to the procedure to which it
belongs.

Goto Statement

As mentioned above statements may be preceded by labels. The goto statement transfers
control to a specific label. The format of a goto statement is as follows:

goto label;

where label has been previously declared in the current block. The following is an example of
the goto statement:

label
 GotoLoop;
var
 i: Integer;
begin
 i := 1;
GotoLoop:
 WriteLn(i);
 Inc(i,2);
 if i < 100 then
 goto GotoLoop;
end.

TMT PASCAL
Developer Guide

31

If Statement

The If statement conditionally executes one of two statements based on the value of an
expression. If statements take the following form:

if expression then
statement

[else statement]

where expression evaluates to a Boolean value. If expression results in True then the
statement following the reserved word then is executed. Control is then transferred to the first
statement outside the if statement.

If expression evaluates to False and an else clause is specified then the statement following
else is executed. If no else clause exists and expression is False then the if statement is passed
over. The following is an example of an if statement.

if Flag then
WriteLn(‘Expression is True’)

else
WriteLn(‘Expression is False’);

The end of an if statement is indicated by a semicolon (;). In the above example, if Flag is a
constant then TMT Pascal optimizes code generation and automatically eliminates code that is
never executed.

InLine Statement

The inline clause is used to define a short machine language routine. inline procedures are
treated as macros rather than procedure calls and are therefore extremely efficient. It is
recommended that you have thorough knowledge of 32 bit assembler before writing machine
code macros.

function IsLower(Ch:Char):Boolean;
 inline(
 $58/ { pop eax }
 $3C/$61/ { cmp al,'a' }
 $0F/$90/$C4/ { setge ah }
 $3C/$7A/ { cmp al,'z' }
 $0F/$9E/$C0/ { setle al }
 $22/$E0) { and al,ah }

Notice the use of new 80386 and 80486, Pentium, AMD 3DNow! and Intel MMX
instructions. For more information about CPU extensions refer to your Intel™ and/or AMD™
reference manuals.

Repeat Statement

The repeat statement, much like the for statement, executes one or more statements in a loop.
Unlike a for statement where the loop condition is tested prior to each iteration, a repeat
statement condition is tested after each iteration. Therefore a repeat loop is executed at least
once. repeat takes the following form:

repeat

statement [; statement]

until expression;

32
Programmer’s Reference

where the repeat loop executes until the expression evaluates to the boolean value of True.
When the expression is False, the loop is executed again. The following is an example of the
repeat statement:

repeat {Do nothing} until KeyPressed;

While Statement

The While statement executes one or more statements in a loop. while statements take the
following form:

while expression do

statement

where expression evaluates to a Boolean type. A while loop executes until expression
evaluates to False. when False, control is transferred to the first statement outside the while
loop.

With Statement

The with statement allows one to refer to the fields of a record type as if they were
independent variables. with takes the following form:

with variable [, variable] do

statement

where variable refers to a record type. Statement may refer to the fields of variable without
specifying the variable name. The following is an example of the with statement:

type
 ScreenString = record
 x, y: Integer;
 str : String;
end;
var
 ScrnSay : ScreenString;
begin
 with ScrnSay do
 begin
 x := 5;
 x := 5;
 y := 10;
 str:= 'Hello World!';
 end;
end.

Mem, MemW, MemL, and MemD

TMT Pascal implements four predefined arrays to directly access memory:

Mem, MemW, MemL, and MemD.

• Each component of Mem is a Byte
• Each component of MemW is a Word
• Each component of MemL is a Longint.
• Each component of MemD is a DWORD.

TMT PASCAL
Developer Guide

33

See also: Memory Organization

Port, PortW and PortD

TMT Pascal implements three predefined arrays to directly access 80x86 CPU data ports:

Port, PortW, and PortD.

Port, PortW, and PortD are one-dimensional arrays, and each element represents a data port
whose port address corresponds to its index.

• Each component of Port is a Byte
• Each component of PortW is a Word
• Each component of PortD is a DWORD.

When a value is assigned to a component of Port, PortW or PortD, the value is output to the
selected port. When a component of Port, PortW or PortD is referenced in an expression, its
value is input from the selected port.

1.8 Programs and Units

TMT Pascal source files contain units, programs, or both. A unit is a collection of procedures,
functions, and data that is accessible to other programs or units. Units aid in the modular
design of applications and are similar to libraries. Units may not be executed directly. A
program consists of one or more procedures or functions. The main procedure of a program is
executed during runtime.

Units

Units can be compiled separately and take the following form:

unit Unitname;
interface
 [Declaration]
implementation
 [Declaration]
[
 begin
 [statement [; statement]]
]
end.

Unitname is the name of the unit. This is the same name that you will use in programs to
reference the unit. There are three sections within each unit.

Interface Section
The interface section contains declarations of types, constants, variables, procedures, and
functions that are public and accessible to other programs and units. When declaring
procedures and functions in the Interface section, only the procedure header is required. These
declarations are similar to using the forward clause that tells TMT Pascal that the complete
declaration is further ahead in the program. The entire procedure declaration is done in the
implementation section. Local variables and procedures that need not be accessible outside
of the unit may be declared in the implementation section.

34
Programmer’s Reference

Implementation Section
The implementation section contains local types, constants, variables, labels, procedures and
functions. Procedures and functions are local to the unit unless their header is also declared in
the interface section. The implementation section contains complete procedure and function
declarations.

Unit Initialization
The initialization section starts immediately after the begin statement. This code block is
executed by the main program that uses the unit. It is executed prior to the main code block.

Each unit is terminated by the end statement followed by a period. The reserved words
Interface and Implementation must be specified in a unit. The initialization section is optional.

In Borland Pascal, private procedures are compiled as near while public procedures are far.
Therefore private procedures are more efficient. In TMT Pascal both private and public
procedures are near and equally efficient.

Programs

Programs require a different format from units. The general format takes the following form:

[program identifier;]
[uses Unitname [, Unitname]]
[Declaration]
begin
 statement [; statement]
end.

 The identifier following the program statement declares the name of the program. Program
files are terminated by the end statement followed by a period (.).

The uses statement tells TMT Pascal which units it uses. Unitnames listed after the uses
statement are loaded by TMT Pascal. Procedures and variables referenced by the program are
linked into the executable generated. All types, constants, variables, and functions declared in
the Interface section of units are accessible to the program.

All text beyond the final end statement in either a unit or program is ignored by TMT Pascal.

In TMT Pascal the main program may contain interface and implementation parts as
well. This allows access to the variables of the main program from other modules:

// Test Program
program Test;

interface
 var global: Integer;

implementation
uses UnitTest;

begin
 UnitTest.Write;
end.

// Test Unit
unit UnitTest;

TMT PASCAL
Developer Guide

35

interface
 procedure Write_global;

implementation
uses Test;
 procedure Write_global;
 begin
 Write(test.global);
 end;
end.

 The name of the file that contains the text of the main program or unit must be
identical with the name that follows the keyword program.

1.9 Dynamic-Link Libraries (DLL’s)

Targets: OS/2, Win32

About DLL’s

In Microsoft® Windows® and IBM © OS/2 © operating systems, dynamic-link libraries
(DLL) are modules that contain functions and data. A DLL is loaded at runtime by its calling
modules (.EXE or DLL). When a DLL is loaded, it is mapped into the address space of the
calling process.

Dynamic linking has the following advantages over static linking:

• Processes that load a DLL at the same base address can use a single DLL simultaneously,
sharing a single copy of the DLL code in physical memory. Doing this saves memory and
reduces swapping.

• When the functions in a DLL change, the applications that use them do not need to be
recompiled or relinked as long as the function arguments, calling conventions, and return
values do not change. In contrast, statically linked object code requires that the
application be relinked when the functions change.

• A DLL can provide after-market support. For example, a display driver DLL can be
modified to support a display that was not available when the application was initially
shipped.

• Programs written in different programming languages can call the same DLL function as
long as the programs follow the same calling convention that the function uses. The
calling convention (such as C, Pascal, or standard call) controls the order in which the
calling function must push the arguments onto the stack, whether the function or the
calling function is responsible for cleaning up the stack, and whether any arguments are
passed in registers. For more information, see the documentation included with your
compiler.

A potential disadvantage to using DLLs is that the application is not self-contained; it depends
on the existence of a separate DLL module. The system terminates processes using load-time
dynamic linking if they require a DLL that is not found at process startup and gives an error
message to the user. The system does not terminate a process using run-time dynamic linking
in this situation, but functions exported by the DLL are not available to the program.

DLLs can define two kinds of functions: exported and internal. The exported functions can be
called by other modules. Internal functions can only be called from within the DLL where

36
Programmer’s Reference

they are defined. Although DLLs can export data, such data is usually used only by its
functions.

DLLs provide a way to modularize applications so that functionality can be updated and
reused more easilly. They also help reduce memory overhead when several applications use
the same functionality at the same time, because although each application gets its own copy
of the data, they can share the code.

TMT Pascal Multitarget support DLLs for Win32 and OS/2 compilation targets. DLLs are not
supported for MS-DOS protected mode target.

Using DLLs

TMT Pascal provides two ways to import procedures and functions:

• by new name
• by index

Example:
This external declaration imports the function ExitProcess from the system DLL called
KERNEL32 (the Windows 32 kernel):

procedure ExitProcess conv arg_stdcall (uExitCode: DWORD);
external kernel32dll name 'ExitProcess';

Example:
This example program imports ArcCos and ArcSin functions from the DLL called ARCs (see
Writing DLLs):

program TestDLL;

uses Strings;

const
 ARCs = 'arcs.dll';

// import by name
{$ifdef __WIN32__}
function ArcCos conv arg_stdcall (X: Extended): Extended;
 external ARCs name 'ArcCos';
{$else}
function ArcCos conv arg_os2 (X: Extended): Extended;
 external ARCs name 'ArcCos';
{$endif}

// import by index
{$ifdef __WIN32__}
function ArcSin conv arg_stdcall (X: Extended): Extended;
 external ARCs index 1;
{$else}
function ArcSin conv arg_os2 (X: Extended): Extended;
 external ARCs index 1;
{$endif}

var Arg: Extended;

begin
 repeat
 Write('Argument ? ');

TMT PASCAL
Developer Guide

37

 Readln(Arg);
 if (Arg < -1) or (Arg > 1) then
 Writeln('Argument must be in range: [-1..1]');
 until (Arg >= -1) and (Arg <= 1);
 Writeln('ArcCos(', Fls(Arg), ') = ', Fls(ArcCos(Arg)));
 Writeln('ArcSin(', Fls(Arg), ') = ', Fls(ArcSin(Arg)));
end.

Writing DLLs

The structure of a TMT Pascal DLL is identical to that of a program, except that a DLL starts
with a library header (Library) instead of a program header (Program).

All procedures and functions which are to be exported by a DLL, must be compiled with the
export procedure directive.

If you want your DLL to be available to applications written in other languages, it’s safest to
specify the arg_stdcall calling convention in the declarations of exported functions. Other
languages may not support TMT Pascal’s default register calling convention.

Example:

// This implements a very simple DLL with two exported
functions:

library ARCs;

// The export procedure directive prepares ArcCos
// and ArcSin for exporting

uses Math;
{$ifdef __WIN32__}
function ArcCos conv arg_stdcall (X: Extended): Extended;
{$else}
function ArcCos conv arg_os2 (X: Extended): Extended;
{$endif}
begin
 Result := RadToDeg(ArcTan2(Sqrt(1 - X * X), X));
end;

{$ifdef __WIN32__}
function ArcSin conv arg_stdcall (X: Extended): Extended;
{$else}
function ArcSin conv arg_os2 (X: Extended): Extended;
{$endif}
begin
 Result := RadToDeg(ArcTan2(X, Sqrt(1 - X * X)));
end;

// The exports clause actually exports the two routines,
// supplying an optional ordinal number for each of them

exports
 ArcCos name 'ArcCos', // export by name
 ArcSin index 1; // export by index

begin
 // Do nothing
end.

38
Programmer’s Reference

Global variables in DLLs

Global variables declared in a DLL cannot be imported by a TMT Pascal application. A DLL
can be used by several applications at once, but each application has a copy of the DLL in its
own process space, with its own set of global variables. For multiple DLLs or multiple
instances of a DLL to share memory, they must use memory-mapped files. Refer to the
Windows API documentation for further information.

Import Units

You can place declarations of imported procedures and functions directly in the program that
imports them. They are usually grouped together in an “import unit” that contains
declarations for all procedures and functions in a DLL, along with any constants and types
required to interface with the DLL. For instance, the Windows and OS2MAPI are import
units.

Of course, import units are not a requirement of the DLL interface, but they do simplify
maintenance of projects that use multiple DLLs. Also, when the associated DLL is modified,
only the import unit needs updating to reflect the changes.

1.10 Procedures and Functions

Procedures are a sequence of instructions that are separate from the main code block.
Functions are procedures that return a value. Other than this difference, both procedures and
functions are the same.

Procedures are blocks of code that are called from one or more places throughout a program.
Procedures make source code more readable and reduce the size of the executable because
repetitive blocks of code are replaced with a call to a procedure. Both procedures and
functions accept parameters. Parameters allow the calling routine to communicate with a
procedure.

Parameters can be passed by value or by reference or by constant reference.

If passed by value, only the value of the parameter is passed and the procedure has no access
to the actual variable. One can modify the value parameter. It will have an effect only inside
of the procedure body and will not change the actual variable.

If passed by reference, also known as var parameters, an address of the memory location
containing the value is passed thus making it possible to modify the variable.

If passed by constant reference, also known as const parameters, an address of the memory
location containing the value is passed but the compiler does not allow one to modify a
constant parameter and does not allow passing one as an actual variable parameter to another
procedure or function.

Procedures and Functions Declaration

Procedures and functions take the following form:

procedure identifier [(Parameterlist)];

or

function identifier [(Parameterlist)] : ReturnType;

TMT PASCAL
Developer Guide

39

ReturnType is the type of the value returned by the function. Parameterlist is defined as:

Parameter [;Parameter];

where Parameter is:

[var] identifier [,identifier] [: TypeName];

or

[const] identifier [,identifier] [: TypeName];

var specifies a variable parameter. const specifies a constant parameters. var and const
parameters are passed by reference as opposed to being passed var and const parameters are
passed by reference as opposed to being passed by value.

The body of a procedure or function takes the following form:

[Declarations]
begin
 statement [; statement]
end;

Types, labels, constants, and variables declared in the declaration section prior to the begin
statement are local variables. Space for these variables is allocated only when the procedure is
called. Like all variable declarations their data is undefined until initialized. TMT Pascal
procedures and functions may be called recursively.

All identifiers must be declared prior to being referenced. The same rule applies to procedures
and functions.

Forward Declaration

The forward clause is used to define a procedure prior to its complete declaration. forward
tells TMT Pascal that the declaration is further ahead in the program. A forward procedure
declaration takes the following form:

Procedureheader; forward;

External Declaration

The External clause is used to define a procedure that is linked in from an assembly object.

Example:
;----------------- [vga.asm] ----------------
IDEAL
P386
MODEL FLAT,PASCAL

CODESEG

GLOBAL SETVIDEOMODE: PROC
PROC SETVIDEOMODE USES EAX, MODE: WORD
 MOV AX, [MODE]
 INT 10H
 RET
ENDP SETVIDEOMODE

GLOBAL CLEARVGA: PROC

40
Programmer’s Reference

PROC CLEARVGA USES ECX, COLOR: BYTE
 MOV EDI, 0A0000H
 MOV AL, [COLOR]
 MOV AH, AL
 MOV ECX, EAX
 SHL EAX, 16
 MOV AX, CX
 MOV ECX, 64000/4
 CLD
 REP STOSD
 RET
ENDP CLEARVGA

END
;--

///////////////// [Test.pas] ////////////////
program Test;

{$ifndef __DOS__}
This program can not be compiled for OS/2 or Win32
{$endif}

uses CRT;

{$l vga} // include vga.obj file

procedure SetVideoMode(Mode: Word); external;
procedure ClearVGA(Color: Byte); external;

begin
 SetVideoMode($13); // setup VGA/MCGA mode 320x200
 ClearVGA(10); // fill screen with green color
 ReadKey; // wait for key hit
 ClearVGA(15); // fill screen with white color
 ReadKey; // wait for key hit
 ClearVGA(0); // fill screen with black color
 ReadKey; // wait for key hit
 SetVideoMode($03); // setup VGA text mode 80x25
end.
///

See also: Dynamic-Link Libraries (DLL’s)

Interrupt Procedure

In TMT Pascal, the Interrupt clause defines a procedure that is to be used as an interrupt
handler.

The parameters of an interrupt procedure are the CPU registers. The following is the order of
the CPU registers: EFLAGS, CS, EIP, EAX, EBX, ECX, EDX, ESI, EDI, DS, ES, EBP. If
these register variables are assigned a new value, upon completion of the interrupt the new
values will be restored onto the actual CPU registers.

Declaration:
procedure IntProc(used registers); interrupt;

 An example below shows you a simple method of working with interrupt-handlers.

TMT PASCAL
Developer Guide

41

program Timer1;
uses Dos, Crt;
var
 Int1CSave: FarPointer;
 Time: LongInt;

// TimerHandler
procedure TimerHandler; Interrupt;
var
 StoreX, StoreY: Word;
begin
 Inc(time);
 StoreX:= WhereX;
 StoreY:= WhereY;
 GotoXY(1,1);
 Write(time);
 GotoXY(StoreX, StoreY);
 Port[$20] := $20;
end;
begin
 ClrScr;
 Time := 0;
 GetIntVec($1C, Int1CSave);
 SetIntVec($1C, @TimerHandler);
 Writeln;
 Writeln('Type something and press "ENTER" to exit');
 Readln;
 SetIntVec($1C, Int1CSave);
end.

When using Intr() and MsDos(), keep in mind that the DOS interrupt handlers can
deal only with the addresses from the 1st megabyte of memory.

Procedural Value

TMT Pascal has a notion of a procedural value. It gives an opportunity to use a procedure or
function in a program as a usual simple type object such as enumerate type or subrange type.
One can declare a variable of the procedural type, make an assignment to it, and invoke the
procedure body from it.

The procedural value implemented in the TMT Pascal occupies 8 bytes of memory and
consists of two parts: the entry point to the routine and the reference to the local environment
of the routine (known as a routine base). The format of a procedural value is the following:

0 +-----------------------+
 ¦ The entry point ¦
4 +-----------------------¦
 ¦ The local environment ¦
8 +-----------------------+
The first part is needed for calling the routine. The second part is used to access the routine
variables.

Such format of the procedural value is incompatible with the Borland Pascal format which has
only the entry point.

Furthermore, the stack frame structure and parameter passing conventions differ from those in
Borland Pascal.

42
Programmer’s Reference

Thus the approach used in TVision and CLassLib for writing iterations cannot be used.
However, we offer this correct and reliable (and more standard) way:

type list = object
 next: ^list;
 procedure for_all(procedure body(var v));
end;
procedure list.for_all;
var
 p: ^list;
begin
 p := @self;
 repeat
 body(p);
 p := p^.next;
 end;
end;
...
type int_list = object(list)
 value: integer;
 function first_positive: ^int_list;
end;
function int_list.first_positive;
label OK;
var
 res: ^int_list;
procedure do_item(var v);
begin
 if int_list (v).value > 0 then
 begin
 res := @v;
 goto OK;
 end
end;
begin
 res := nil;
 for_all(do_item);
OK:
 first_positive := res;
end;
...
The procedural value from a method or object can be obtained by selecting the method from
some object value (not from a type). The parameters of this procedural value must match the
parameters of the method. The invocation of such a procedural value is an invocation of the
corresponding method of the object. The reference to the object is transferred through the base
of the procedural value.

You can use only global procedural values to initialize a type constant.

Procedural values may be used only while the environment where they were formed is still in
existence. Thus,

− for local procedures—until the exit from the block, in which they are described;
− for methods—while the underlying object still exists.

Using Statement as Procedure

With TMT Pascal you can use any statement as a procedure body, except for the assignment
and procedure calls.

TMT PASCAL
Developer Guide

43

The RESULT variable in the body of such functions denotes the variable that contains the
return value. The RESULT is of the function return type and may be used as a variable without
any restrictions.

With TMT Pascal you can enter the procedure body directly as a procedure parameter. The
procedure or function header (if not specified) takes the procedural parameter type. If the
procedure header is specified, the procedure name is omitted.

Example:

function Integral(function f(a: Real):Real; low, high, step:
Real): Real;
begin ... end;
...
Writeln(integral (
 function(x: Real): Real; begin Result := sqrt(x) end, 0, 10,
0.1));
Writeln(integral(begin Result := sqrt(a) end, 0, 10, 0.1));
Writeln(integral(
 function; // function keyword needed
 var x: Real; // for local declaration
 begin x := sqrt(a); Result := x end, 0, 10, 0.1)
);
Writeln(integral(
 declare; // other way
 var x: Real;// for local variable declaration
 begin
 x := sqrt(a);
 Result := x
 end, 0, 10, 0.1)
);

TMT Pascal allows an exit from a local procedure to the one that contains it. This feature is
listed in the Pascal’s ANSI standard but not realized in Borland Pascal. Together with
procedural values, this is very useful for error handling:

program test;
var
 on_eof: procedure;
 function read_char: char;
var
 c: char;
begin
 if EOF(Input) then on_eof;
 Read(c);
 Read_char := c;
end;
procedure p;
label eof_reached;
 procedure go_eof; begin goto eof_reached; end;
 begin
 on_eof := go_eof;
 while True do Write(read_char);
 Eof_reached:
 Writeln('*** EOF ***');
 on_eof := nil;
 end;
begin
 p;
end.

44
Programmer’s Reference

break and continue operators cannot be used to exit from a procedure. Use goto
instead.

Example:

{ incorrect example }
for i := 1 to 10 do
Writeln (
 integral(// from previous example
 if a < 0
 then break // incorrect
 else result := sqrt (a),
 i, i + 1, 0.01)
);
{ correct example }
declare
 label L;
begin
 for i := 1 to 10 do Writeln (
 integral(
 if a < 0
 then goto L // correct
 else result := sqrt (a), i, i + 1, 0.01)
);

Functions may return any values of any type, including structures and arrays.

1.11 OOP Extensions

TMT Pascal implements object oriented programming (OOP) extensions similar to the OOP
extensions in Borland Pascal. This sections describes the applicable syntax of OOP.

Object

An object is a structure that consists of fields and methods. The fields are effectively
declarations of data while the methods define routines that act on the data. Object types allow
four types of routines: procedures, functions, and also constructors and destructors; the latter
two are allowed only within objects.

See also Object Syntax.

Inheritance

One object type can extend another object type by adding or replacing fields and methods. In
this case the new object is said to be a descendant object; the older object is said to be an
ancestor object. The process of an extension is called its inheritance. The descendant object
type may have its own descendants; these are also viewed as the descendants of the original
ancestor object. The domain of an object, is the object together with all of its descendants.

Object Syntax

The syntax of an object type declaration is

TMT PASCAL
Developer Guide

45

object [heritage]
 Component list
 [private Component list]
end

where Component list is defined as:

[Fieldlist]
 [Method list]
Heritage:
 (object type identifier)
Fieldlist:
 [field entry [; Field list]]
Field entry:
 identifier list : type
MethodList:
 [method entry [; MethodList]]
Method entry:
 [method heading [; virtual]]

Restrictions On Object Description

object types can be declared anywhere a type identifier is allowed by Pascal’s syntax. object
types can be declared within procedures, functions, or other methods if the declaration is not
ambiguous.

Like records, object types cannot include File components or records or objects that include
‘file’ components.

OOP Scopes

Component identifiers are visible in all the methods throughout the domain of the object,
including the procedures, functions, destructors and constructors that implement the methods
of the object type and its descendants. However, the scopes of the fields and methods declared
in the private section of the object type declaration are restricted to the unit that contains the
definition of the object type. private fields and methods are inaccessible from other units.
Private fields and methods can, however, be accessed from other object types declared in the
same unit. Below are examples of several objects:

type Point =
 record
 X,Y: Longint;
 end

type Circle =
 object
 Center: Point;
 Radius: Longist;
 procedure Show;
 procedure Hide;
 end;

type Ellipse =
 object (Circle)
 Radius2: Longint;

46
Programmer’s Reference

 Angle: Real;
 procedure Show;
 procedure Rotate(NewAngle: Real);
 end;

Here, the object type Ellipse ‘inherits the Center and Radius fields from Circle. It also adds a
new Radius2 and Angle. Furthermore, it uses the method Hide inherited from Circle; it
overrides the method Show and adds a new method, Rotate. The declaration of an object file
includes just the headers of the methods. The methods themselves should appear somewhere
within the current scope. In this way, method declarations are similar to forwarded routines.
When specified, methods names are qualified with object names. For example

procedure Circle.Draw;
begin
 Graph.Circle(X,Y,Radius);
end;

Note that within the method declaration, the fields of the object are visible to the compiler.

Public and Private declarations

Public and private are standard directives in the Object Pascal language. Treat them as if they
were reserved words. For readability, it is best to organize an object declaration by visibility,
placing all the private members together, followed by all the protected members, and so on.
This way each visibility reserved word appears at most once and marks the beginning of a
new section of the declaration. So a typical object declaration should look like this:

type
 TObject = object
 private
 { Private declarations }
 public
 { Public declarations }
 end;

The scope of component identifiers declared in private component sections is restricted to the
module that contains the object type declaration. Keep in mind that:

• Inside the module, private component identifiers act like normal public component
identifiers.

• Outside the module, private component identifiers are unknown and inaccessible.
Use the public part to
• Declare data fields you want methods in objects in other units to access
• Declare methods you want objects in other units to access

Declarations in the private part are restricted in their access. If you declare fields or methods
to be private, they are unknown and inaccessible outside the unit the object is defined in. Use
the private part to

• Declare data fields you want only methods in the current unit to access
• Declare methods you want only objects defined in the current unit to access

TMT PASCAL
Developer Guide

47

Virtual Methods

Methods can be either static or virtual. Calls to static methods are resolved at compilation.
Calls to virtual methods are resolved at run time with delayed or late binding. By default the
methods are static; virtual methods contain a special keyword virtual as part of their
declaration. Static methods can be overridden without restrictions. However, virtual method
override must be done by a method that uses exactly the same syntax, e.g. has the same
number and types of the arguments. Objects that contain virtual methods require building a
special jump table, called the Virtual Method Table (VMT). The VMT is created during the
initialization of the object through a constructor call.

Constructors

Constructors initialize (instantiate) objects by creating and filling their VMT. Any object that
uses virtual methods must be first initialized.

type Circle =
 object
 Center: Point;
 Radius: Longint;
 constructor Init(Z:Point; R:Longint);
 procedure Show; virtual;
 procedure Hide;
 destructor Kill;
 end;
var
 C: Circle;
 P: Point;

The following code will instantiate, display, hide, and display the circle C:

P.X:=20;
P.X:=40;
C.Init(P,100);
C.Show;
While Not KeyPressed Do;
C.Hide;
C.Kill;

where:

constructor Circle.Init(Z:Point; R:Longint);
begin
 Center:=P;
 Radius:=R;
end;

Besides initializing the fields of the circle C; C.Init also creates a VMT table. This table is
essential for calling a virtual method, such as Show.

Without the C.Init call, the example above will fail (probably cause a run-time exception or
halt the system). However, when the example is compiled with the range-check {$R+}
switch on, TMT Pascal will automatically detect calls from a non-instantiated method and
produce a run-time error.

See also Destructors

48
Programmer’s Reference

Fail procedure

Called from within a constructor, Fail causes the constructor to de-allocate a dynamic object it
has just allocated.

Declaration:

procedure Fail;

Remarks:

Fail must be called only if one of the constructor’s operations fails.

Using New Procedure (OOP)

In most cases, instantiating of an object is combined with allocation of memory for the object:

var C: ^Circle;
begin
 New(C);
 C.Init(P, R);
...
The extended syntax of the New procedure allows one to combine the operation:

var C: ^Circle;
begin
 New(C.Init(P, R));
...
Note that constructors cannot be virtual methods, since virtual methods cannot be called
before a constructor initializes the VMT.

See also New

Desctructors

Destructors are used to clean up after an object is no longer needed. Unlike constructors,
destructors can be virtual. Destruction of an object is often combined with deallocation of its
memory with the Dispose procedure:

var C: ^Circle;
begin
 New(C);
 C.Init(P,R);
 ...
 C.Kill;
 Dispose(C);
end;

If a constructor fails to perform initialization (often because of its inability to allocate
memory) for the structures affiliated with the object, it can execute a special system function
Fail. Fail signals TMT Pascal to reverse all allocation of the object that might have occurred
and return nil as the value of the object’s pointer. Fail can be called only within constructors.

See also Constructors

TMT PASCAL
Developer Guide

49

Inherited reserved word

Inherited can be used to denote the ancestor of the enclosing method’s object type. inherited
cannot be used within methods of an object type that has no ancestor.

Self argument

Methods have an additional implicit argument, called Self, which is automatically supplied by
the compiler. Self contains the instance of the object for which the method was called. Self, as
well, as all of its fields are automatically added to the method’s symbol table.

1.12 Open Arrays

TMT Pascal allows one to use a multidimensional open array as a parameter in procedures
and functions. The open array parameter has the following format description:

array [dim] of type,

where dim is a positive integer constant, defining the number of dimensions, and type is the
type of the array elements. To determine the upper bounds of the array, use the high (array)
function. It returns a vector of Longints (array [0..dim-1] of Longint) containing the upper
bounds. The lower bounds are always set to 0. The vector of the lower bounds can be obtained
with a Low function.

Example:
procedure print_vector (v: array(1) of Double);
var
 i: integer;
begin
 for i := 0 to high(v)[0] do Write(v[i]:10:6, ' ');
 Writeln;
end;
procedure print_matrix(m: array(2) of double);
var
 i: integer;
begin
 for i := 0 to high(m)[0] do print_vector(m[i]);
 Writeln;
end;
const a: array[1..3, 1..3] of Double =
((1,0,2),(2,1,0),(1,2,1));
begin
 print_matrix(a);
end.

1.13 User Defined Operators

TMT Pascal allows redefining of the standard operators on predefined types and overloading
of these operators for new types. For this, it uses the construction

overload

The syntax is:

50
Programmer’s Reference

overload op_sign = qualified procedure identifier;

Where the op_sign is one of the standard operator symbols:

+ - / * = <> < > <= >=
and or xor shl shr mod div in not
+:= -:= *:= /:=

When a re-defined operator is used, TMT Pascal uses the last definition that could be applied
toward operands of given types. For example, this fragment:

function add2_rr (a, b: Real): Real;
 Result := (a + b) * 2;
function add2_ii (a, b: Integer): Integer;
 Result := (a + b) * 2;

overload + = add_rr;
overload + = add_ii;

redefines the “+” operator. Notice that the order of overload’s is important. The reverse order

overload + = add_ii;
overload + = add_rr;

will cause add_rr to be used always since integers can always be cast into reals.

In the SOURCES subdirectory you can find the source of the COMP module which realizes
the complex numbers and defines the operators on them.

Remarks:

• The operators +:=, -:=, *:= and /:= have the lowest precedence (lower, than the
comparison operators) and are right-associative.

• The operators “+:=” and “-:=” are predefined for all integer and real types.
• The operators “*:=” and “/:=” are predefined for all real types, with the obvious meaning.

1.14 Built-in Assembler

TMT Pascal allows mixing assembly language code with Pascal using two distinct methods:

Using external assembly files, compiled with a suitable 32-bit assembler. These can be linked
in with the {$L} Pascal directive.

Using built-in assembly code, which can be placed inside Pascal source files.

This chapter describes the built-in assembler (BASM).

Since the program created by the TMT Pascal is executed in the flat model, the far call and
jump commands as well as the @Code and @Data symbols are not implemented.

Asm Statement

The built-in assembler is invoked with the asm statement. The syntax of the asm statement is

asm
 [AssemblerStatement(s)]
end;
The asm statement may appear anywhere where a Pascal statement allowed.

TMT PASCAL
Developer Guide

51

asm
 MOV Al, Value
 MOV DX, ThePort
 OUT DX, AL
end;

Assembler Procedure

The built-in assembler can also be used to write entire procedures in assembler language.
Such procedures should have the assembler keyword appended after a procedure header.

function MultBy9(X: Longint):Longint;
assembler;
 asm
 MOV EAX,[X]
 LEA EAX,[EAX*8+EAX]
end;

The function above used the i80386 index scaling feature to implement very fast
multiplication by 9.

Assembler procedures differ from the standard Pascal procedures in the following ways:

No Return variable
There is no return variable. You must return the function results in an appropriate register.
More precisely,
• Ordinal values are returned in AL (8-bit values), AX (16-bit values), or EAX (32-bit

values).
• Real values are returned in DX:BX:AX.
• Floating point (8087) values are returned in ST(0).
• Pointers are returned in EAX.
• Strings are returned in a temporary location pointed by the @Result symbol.

Structured variables
Structured arguments (i.e. strings, objects, records) are not copied into the local variables.
They should be treated as var parameters.

Stack Frame
Assembler procedures have no stack frames if they have no arguments and no local symbols.
Generally, the stack frame supplied by the built-in assembler is

PUSH EBP // Appears if locals + params >0
MOV EBP,ESP // Appears if locals + params >0
SUB ESP, locals // Appears if locals + params >0
...
LEAVE // Appears if locals + params >0
RETN params // Always appears

Here Locals is the total size of local parameters, Params is the total size of procedure
parameters.

Register Preservations
Assembler code should preserve the following registers: DS, CS, SS, ES, EBP, and ESP. All
other registers can be destroyed. Notice the inclusion of the ES register. TMT Pascal always
assumes that ES is equal to DS.

Do not change segment, page, and interrupt tables, as well as the control, debug and test
registers, unless you are thoroughly familiar with 386 protected mode architecture. Privileged
instructions like LGDT and LIDT are supported by built-in assembler. However, avoid using
them unless you know exactly what you are doing.

52
Programmer’s Reference

Code Procedure

Besides the assembler-routine you can use the code-routine. It has the following differences:
the compiler doesn’t emit the frame command on enter and return from the routine (including
the ret command), and the local parameters are based on ESP at the moment of entry.

Example:

function hi (n: word); code;
 asm
 mov al, byte ptr [n+1]
 ret
end;

Command Syntax

The general syntax of an assembler statement is

[label:]
 [prefixes]
 [[opcode [operand1 [,operand2 [,operand3]]]]

Here:

label: is an optional label definition;
prefixes are instruction prefixes;
opcode is a instruction mnemonic or directive;
operand is an operand expression.

Assembler Labels

The built-in assembler allows two types of labels:

• Global labels are declared inside a Pascal program within label declarations. Global labels
are identical to Pascal labels.

• Local labels are not declared. They must start with the @ symbol and contain letters,
digits, or underscore characters. Local labels are visible only within the current asm
statement.

Labels can be used with any assembler statements. More than one label can be used, if
needed. Labels are always optional.

Assembler Prefixes

Prefixes are modifiers for the following instruction. TMT Pascal allows the following prefix
mnemonics:

* SEGCS Override the operand's segment with CS:
* SEGDS Override the operand's segment with DS:
* SEGES Override the operand's segment with ES:
* SEGFS Override the operand's segment with FS:
* SEGGS Override the operand's segment with GS:
* SEGSS Override the operand's segment with SS:
* LOCK Lock the bus
* REP Repeat the instruction
* REPE and REPZ Repeat while equal
* REPNE and REPNZ Repeat while not equal

TMT PASCAL
Developer Guide

53

Assembler Opcodes

The opcodes are either instruction mnemonics or assembly directives. The list of supported
instruction opcodes is given below. The only assembly directives that are allowed in TMT
Pascal are DB, DW, and DD.

Example:
asm
 DB 'a','b','c'
 DB 'This code was copyrighted by GnueWare'
 DW 1,2,4,8,16,$20,40h
 DD Offset HeapLo
end;

The DB, DW, and DD directives allow a variable number of arguments, separated by
commas. The other commonly used assembly directives can be emulated with Pascal
statements. For instance, the EQU directive is emulated with const, while STRUCTs can be
defined with the type record declaration.

Assembler Registers

The following registers can appear in built-in assembler:

 8-bit: AL BL CL DL AH BH CH DH
 16-bit: AX BX CX DX SI DI BP SP
 32-bit: EAX EBX ECX EDX ESI EDI EBP ESP
 Segment: CS DS ES SS FS GS
 8087: ST
 Control: CRn
 Debug: DRn
 Test: TRn

The segment register can be used for segment overrides. 32-bit registers can be used for
indexing following the standard 80386 conventions. 16-bit registers should never be used for
addressing, unless your entire program does not exceed 64K. Even then, addressing with 16-
bit registers is inefficient. Generally, an address is formed as

Base + Index * Scale + Displacement

where Base is any of the 32-bit registers, Index is any 32-bit register but not ESP, and Scale
should be 1,2,4, or 8. Finally, the Displacement is a 32-bit integer quantity.

Here are some valid and invalid indexing modes:

 [EAX+EBX]; ok
 [EAX+EAX]; ok, EAX is both base and index.
 [ESP]; ok, ESP is index, no base.
 [EDX*2]; ok, use this to index a global array of words.
[EAX*4+EBP]; ok, use this to index a local array of longints.
 [SI]; ok, but is likely to lead to hard-to-find bugs.
 [ESI+BX]; illegal, mix of 16- and 32- bit registers.
 [SI*4]; illegal, 16-bit registers cannot be scaled.
 [ESP*4]; illegal, ESP cannot be an index.

Please consult Intel™ 80386/80486 Programmer’s reference for more details.

54
Programmer’s Reference

Assembler Opcode Mnemonics

This section lists valid opcode mnemonics. Please consult an 80386 reference book for
additional details. The list uses the following abbreviations:

* acc - accumulator register (AL, AX, EAX)
* brm - byte register or memory operand
* cdt - control, debug or test register
* imm - byte
* label - offset in code
* mem - memory operand
* none - no operands
* reg - register
* rm - register or memory operand
* seg - segment register
* st - coprocessor top of stack register
* st(i) - coprocessor register

Opcode: Possible arguments
 AAA: none
 AAD: none
 AAM: none
 AAS: none
 ADC: rm,reg | reg,rm | rm,imm
 ADD: rm,reg | reg,rm | rm,imm
 AND: rm,reg | reg,rm | rm,imm
 ARPL: rm,reg
 BOUND: reg,mem
 BSF: reg,rm
 BSR: reg,rm
 BTC: rm,reg | rm,imm
 BTR: rm,reg | rm,imm
 BTS: rm,reg |rm,imm
 BT: rm,reg | rm,imm
 CALL: label | rm
 CBW: none
 CDQ: none
 CLC: none
 CLD: none
 CLI: none
 CLTS: none
 CMC: none
 CMP: rm,reg | reg,rm | rm,imm
 CMPSB: none
 CMPSD: none
 CMPSW: none
 CPUID: none
 CWD: none
 CWDE: none
 DAA: none
 DAS: none
 DEC: rm
 DIV: rm
 ENTER: imm,imm
 F2XM1: none
 FABS: none
 FADD: none | st,st(i) | st(i),st | mem
 FADDP: st(i),st
 FBLD: mem

TMT PASCAL
Developer Guide

55

 FBSTP: mem
 FCHS: none
 FCLEX: none
 FCOM: none | st(i) | mem
 FCOMP: none | st(i) | mem
 FCOMPP: none
FDECSTP: none
 FDISI: none
 FDIV: none | st,st(i) | st(i),st | mem
 FDIVP: st(i),st
 FDIVR: st(i),st
 FDIVRP: st(i),st
 FENI: none
 FFREE: st(i)
 FIADD: mem
 FICOMP: mem
 FICOM: mem
 FIDIVR: mem
 FIDIV: mem
 FILD: mem
 FIMUL: mem
 FIMUL: mem
FINCSTP: mem
 FINIT: none
 FIST: mem
 FISTP: mem
 FISUB: mem
 FISUBR: mem
 FLD: st(i) | mem
 FLD1: none
 FLDCW: mem
 FLDENV: none
 FLDL2E: none
 FLDL2T: none
 FLDLG2: none
 FLDLN2: none
 FLDPI: none
 FLDZ: none
 FMUL: none | st,st(i) | st(i),st | mem
 FMULP: none | st(i),st
 FNCLEX: none
 FNDISI: none
 FNENI: none
 FNINIT: none
 FNOP: none
 FNSAVE: none
 FNSTCW: none
FNSTENV: none
 FNSTSW: none
 FPATAN: none
 FPREM: none
 FPREM1: none
 FPTAN: none
FRNDINT: none
 FRSTOR: mem
 FSAVE: mem
 FSCALE: none
 FSETPM: none
 FSQRT: none

56
Programmer’s Reference

 FST: st(i) | mem
 FSTP: st(i) | mem
 FSTCW: mem
 FSTENV: mem
 FSTSW: mem | AX
 FSUB: none | st,st(i) | st(i),st | mem
 FSUBP: none | st(i)st
 FSUBR: none | st,st(i) | st(i),st | mem
 FSUBRP: none | st(i),st
 FTST: none
 FWAIT: none
 FXAM: none
 FXCH: none
FXTRACT: none
FYL2XP1: none
 FYL2X: none
 HLT: none
 IDIV: rm
 IMUL: rm | reg,imm | reg,rm,imm
 IN: acc,imm | acc,DX
 INC: rm
 INSB: none
 INSD: none
 INSW: none
 INT: imm
 INTO: none
 IRETD: none
 IRET: none
 JA: label
 JAE: label
 JB: label
 JBE: label
 JC: label
 JCXZ: label
 JE: label
 JECXZ: label
 JG: label
 JGE: label
 JL: label
 JLE: label
 JMP: label | rm
 JNA: label
 JNAE: label
 JNB: label
 JNBE: label
 JNC: label
 JNE: label
 JNG: label
 JNGE: label
 JNL: label
 JNLE: label
 JNO: label
 JNP: label
 JNS: label
 JNZ: label
 JO: label
 JP: label
 JPE: label
 JPO: label
 JS: label

TMT PASCAL
Developer Guide

57

 JZ: label
 LAHF: none
 LAR: reg,rm
 LDS: reg,mem
 LEAVE: none
 LEA: reg,mem
 LES: reg,mem
 LFS: reg,mem
 LGDT: mem
 LGS: reg,mem
 LIDT: mem
 LLDT: rm
 LMSW: rm
 LODSB: none
 LODSD: none
 LODSW: rm
 LOOP: label
 LOOP16: label
 LOOP32: label
 LOOPE: label
 LOOPNE: label
 LOOPNZ: label
 LOOPZ: label
 LSL: reg,rm
 LSS: reg,mem
 LTR: reg,mem
 MOV: reg,rm|rm,reg|rm,imm|rm,seg|seg,rm|reg,cdt|cdt,reg
 MOVSB: none
 MOVSD: none
 MOVSW: none
 MOVSX: reg,rm
 MOVZX: reg,rm
 MUL: rm
 NEG: rm
 NOP: none
 NOT: rm
 OR: none
 OUT: imm,acc | DX,acc
 OUTSB: none
 OUTSD: none
 OUTSW: none
 POP: rm
 POPA: none
 POPAD: none
 POPF: none
 POPFD: none
 PUSH: rm
 PUSHA: none
 PUSHAD: none
 PUSHF: none
 PUSHFD: none
 RCL: rm,1 | rm,CL | rm,imm
 RCR: rm,1 | rm,CL | rm,imm
 RET: none,imm
 RETF: none,imm
 RETN: none,imm
 ROL: rm,1 | rm,CL | rm,imm
 ROR: rm,1 | rm,CL | rm,imm
 SAHF: none

58
Programmer’s Reference

 SAL: rm,1 | rm,CL | rm,imm
 SAR: rm,1 | rm,CL | rm,imm
 SBB: rm,reg | reg,rm | rm,imm
 SCASB: none
 SCASD: none
 SCASW: none
 SEGCS: none
 SEGDS: none
 SEGES: none
 SEGSS: none
 SEGFS: none
 SEGGS: none
 SETA: brm
 SETAE: brm
 SETB: brm
 SETBE: brm
 SETC: brm
 SETE: brm
 SETGE: brm
 SETG: brm
 SETL: brm
 SETLE: brm
 SETNA: brm
 SETNAE: brm
 SETNBE: brm
 SETNB: brm
 SETNC: brm
 SETNE: brm
 SETNGE: brm
 SETNG: brm
 SETNLE: brm
 SETNL: brm
 SETNO: brm
 SETNP: brm
 SETNS: brm
 SETNZ: brm
 SETO: brm
 SETPE: brm
 SETPO: brm
 SETP: brm
 SETS: brm
 SETZ: brm
 SGDT: mem
 SHLD: rm,reg,imm
 SHL: rm,1 | rm,CL | rm,imm
 SHRD: rm,reg,imm
 SHR: rm,1 | rm,CL | rm,imm
 SIDT: mem
 SLDT: rm
 SMSW: rm
 STC: none
 STD: none
 STI: none
 STOSB: none
 STOSD: none
 STOSW: none
 STR: rm
 SUB: rm,reg | reg,rm | rm,imm
 TEST: rm,reg | reg,rm | rm,imm
 VERR: rm

TMT PASCAL
Developer Guide

59

 VERW: rm
 WAIT: none
 XCHG: reg,rm | rm,reg
 XLAT: none
 XOR: rm,reg | reg,rm | rm,imm

Assembler Operand Expressions

Operand expressions are built from operands and operators. Operands are constants, registers,
labels, and memory locations. Operators combine operands and alter their attributes. Each
instruction allows only certain combinations of operands.

Operand expressions can be classified into three classes:

• Immediate operands or constants.
• Registers.
• Memory and label operands.

Immediate operands
 PUSH 10
 MOV AX, 10
 MOV AX, offset Start

Here 10, and Star’ are immediate operands. The values of A and 10 can be determined
immediately; the value of offset Start is determined during linking.

Registers
TMT Pascal built-in assembler allows use of any 8, 16, or 32-bit 80386 registers.

 XOR AH, AL
 LSL EAX,EAX
 MOV AX, FX

Memory and label operands
Memory operands refer to the data stored in memory locations. Usually, one uses square
brackets [..] or the type ptr operator to ensure that the argument is treated as a memory
location. Label operands refer to locations in code.

 MOV EBX,[0]
 POP Word Ptr [88]
 POP Word Ptr 88 // same as above
 JMP @exit
 LOOP16 @loop
Memory and immediate operands can be either absolute or relocatable. An operand is absolute
if its value or offset is entirely known during compilation. An operand is relocatable if its
offset will become known only during linking.

Assembler Operands

TMT Pascal allows the following operands: Numeric Constants, Strings, Registers, Pascal
Symbols and Special Assembler Symbols.

Numeric Constants
Numeric constants are 32-bit integers, e.g. integers in the range -2147483648..4294967295.
Numeric constants can be entered as decimal numbers, binary numbers (using the ‘B’ suffix),

60
Programmer’s Reference

octal numbers (using the ‘O’ or ‘Q’ suffix) or hexadecimal numbers (using the ‘H’ suffix or
‘$’ prefix). Note that the hexadecimal numbers must start with a digit.

Strings
Strings are enclosed in either single or double quotes. A repeated quote of the same type as
the surrounding quotes is treated as one character. String constants of arbitrary length may
occur only in the ‘DB’ directive. In all other cases, the string must not exceed four characters
and its value is converted into an integer number.

Registers
The use of registers was described above.

Pascal Symbols
With built-in assembler you can access the majority of Pascal symbols. These include labels,
constants, variables, types, and procedures. The values, classes and types of Pascal symbols
are summarized in the table below:

Symbol Value Class Type ⋅⋅⋅⋅
label its address Memory NEAR
constant its value Immediate 0
type 0 Memory sizeof(type)
field its offset Memory sizeof(type)
variable its address Memory sizeof(type)
procedure its address Memory NEAR
function its address Memory NEAR
unit its address Immediate 0

Special Assembler Symbols
Built-in assembler supports five special symbols: @CODE, @DATA, @RESULT,
@PARAMS and @LOCALS. The @CODE and @DATA are not really useful in a flat
model. They always return 0Ch and 14h, which are the standard segment selectors for the
code and data segments. The @RESULT symbol points to the pseudo-variable that contains
the function return, @PARAMS and @LOCALS return the size of the parameter and local
areas on stack.

Assembler Operators

TMT Pascal built-in assembler syntax allows the a number of operators, listed below:

& Identifier override operator. The following identifier is
considered to be a user defined symbol, even if its
spelling is identical to an assembler reserved word.

() Parenthesis. Expressions within parenthesis are
evaluated first.

[] Memory reference. The expression within brackets is
evaluated first. This expression should be a valid 386
address. The resulting expression is always treated as a
memory reference.

HIGH, LOW High and Low byte selection. These operators return the
high and low 8 bits of the word-size expression that
follows.

+, - Unary plus and minus operators. The expression should
be an absolute immediate.

SMALL,
LARGE

Forces the built-in assembler to treat the following
operands as a 16- or 32- bit quantity.

OFFSET Returns the 32-bit offset of the expression that follows.
SEG Returns the segment part of the operand.

TYPE Returns the type of the operand. The type of a NEAR
symbol is -1, of a FAR symbol is -2. The type of a memory

TMT PASCAL
Developer Guide

61

operand is its size. The type of an immediate symbol is 0.
PTR Typecasts the following expression into the type symbol

that precedes the PRT operator. Valid typecasts are
BYTE PRT, WORD PRT, DWORD PRT, FWORD PRT,
TBYTE PRT, QWORD PRT, NEAR PRT, and FAR PRT.

* Multiplication. Both arguments must be absolute
immediate quantities, or one of the arguments should be
an index register and the other a scale factor (1,2,4, or 8).

/ Division. Both arguments must be absolute immediate
quantities.

MOD Integer remainder after division. Both arguments must be
absolute immediate quantities.

SHL, SHR Left and right shifts. Both arguments must be absolute
immediate quantities.

+, - Addition and Subtraction. At most one argument can be a
relocatable value and it cannot be the argument that is
being subtracted. The other argument must be an
absolute immediate quantity.

NOT Binary complement. The argument must be an absolute
immediate quantity.

AND Bitwise AND. The arguments must be absolute immediate
quantities.

OR Bitwise OR. The arguments must be absolute immediate
quantities.

XOR Bitwise exclusive OR. The arguments must be absolute
immediate quantities.

Assembler Operator Precedence

The precedence of these operators is shown in the following table (from the highest
precedence to the lowest):

Operator Comments
 & Identifier override
 () [] Sub-expressions, memory reference,
 structure member
 HIGH LOW High and low bytes selectors
 LARGE SMALL 32- and 16- bit operation overrides
 + - Unary operators
 : Segment override
 OFFSET SEG TYPE
 PTR */MOD SHL SHR
 + - Binary operators
 NOT AND OR XOR Bitwise operators

Differences between 16- and 32-bit code

While this manual does not really teach 32-bit assembly programming, we will list here
several considerations important in 32-bit assembler programming. These considerations may
be helpful to a 16-bit programmer entering the 32-bit arena.

Avoid using 16-bit registers for indexing
The built-in assembler will correctly assemble instructions like

62
Programmer’s Reference

 MOV BX,offset table
 MOV AX,table[BX]
 JMP table[BX]
However, these instructions will not work correctly if the size of your program exceeds 64K
and the ‘table’ variable is placed after the 64K limit. This is because 16-bit addresses span
only the 64K of the segment. The last example above is the most dangerous; it is likely to
crash the system.

Jump tables
Jump tables should be built as tables of 32-bit addresses, not 16-bit addresses.

Longint (32-bit) Arithmetic
Try to use longint arithmetic as much as possible. 16-bit instructions often take more space
than corresponding 32-bit instructions. In

 XOR AX, AX
 MOV data1, AX
 MOV data2, AX
it would be better to replace the first instruction with

XOR EAX, EAX
which is one byte shorter. Furthermore, if data1 and data2 can be changed into longints, you
may save a lot more space (and time) both in the assembler and the Pascal sections of the
program.

ECX vs CX
Loop and repeat instructions in 32-bit mode use the ECX register rather than CX. The
following program segment is likely to cause problems:

 MOV CX, size
 MOV ESI, source
 MOV EDI, dest
 REP MOVSB
Also notice that the source and destination registers are ESI and EDI, rather than SI and DI.

POPAD/PUSHAD
Use POPAD and PUSHAD instead of POPA and PUSHA. The latter instructions generate
only 16-bit pushes.

POPFD/PUSHFD
Use POPFD and PUSHFD instead of POPF and PUSHF. The latter instructions generate only
16-bit pushes.

IRETD
Use ‘IRETD’ instead of ‘IRET’. The latter instruction pops 16-bit registers.

String instructions
When doing string operations, it is better to use double word instructions instead of byte or
word. Use MOVSD instead of MOVSW or MOVSB.

JECXZ vs JCXZ
Distinguish between the JCXZ and JECXZ instructions. The former tests the CX register,
while the latter tests ECX. Use of JCXZ instead of JECXZ may lead to hard-to-find bugs.
Similarly, LOOP tests ECX, while LOOP16 tests CX.

Function results
Remember to return 32-bit results in EAX, not DX:AX.

ES: preservations
Do not change the ES register. TMT Pascal depends on ES = DS.

TMT PASCAL
Developer Guide

63

Immediate PUSH
TMT Pascal assumes that an immediate push instruction like
 PUSH Small 0
 PUSH Small offset data
Furthermore notice that like TASM and unlike the PharLap assembler, TMT Pascal will treat

PUSH Word Ptr 0

as if it were

PUSH Word Ptr [0]

Var Parameters
Similar to 16-bit mode, Var parameters are 32-bit pointers. However, in TMT Pascal, pointers
are just 32-bit offsets within the data segment. Therefore, Var parameters are retrieved with a
‘MOV’ instruction, not with an LES or an LDS.

Local Symbols
Local Symbols and Parameters are addressed via the EBP register. For example, in

var local: Longint;
asm
 MOV EAX, local
end;

the last line assembles into

 MOV EAX, [EBP-4]

1.15 Standard Units

TMT Pascal comes with a set of standard units (see UNITS.PDF for more info).
 It is also possible to create units. For example, in writing a
 large program it might become desirable to group display routines or user
 input routines. This allows for greater organization while programming. For
 more information on creating your own units see the Programs and Units
 chapter.

64
Programmer’s Reference

Chapter 2

Win32 Programming

2.1 Writting Win32 GUI Applications

TMT Pascal produces native Win32® GUI applications. This chapter is based on the
Microsoft® Win32® Programmer’s Reference and describes particularities of GUI
application development using the TMT Pascal Multi-target. The TMT Pascal compiler comes
with a set of units which define function and procedure headers for the Windows API.

For more information refer to Microsoft Win32 Programmer’s Reference and Microsoft
Multimedia Programmer’s Reference. Also, you will find sources of all Win32 API
interface units in the \TMTPL\SOURCE\WIN32 subdirectory.

Every graphical Win32-based application creates at least one window (called the main
window) that serves as the main window for the application. This window serves as the
primary interface between the user and the application. Most applications also create other
windows, either directly or indirectly, to perform tasks related to the main window. Each
window plays a part in displaying output and receiving input from the user.

At the start of an application, the system associates a taskbar button with the application. The
taskbar button contains the program icon and the title. When the application is active, its
taskbar button is displayed in the pushed state.

2.2 Structure of Window Procedure

A window procedure is a function that has four parameters and returns a 32-bit signed value
(Longint). The parameters consist of a window handle, a UINT message identifier, and two
message parameters declared with the WParam and LParam data types. For more information,
see WindowProc.

Message parameters often contain information in both their low-order and high-order words.
The Microsoft® Win32® application programming interface (API) includes several macros
an application can use to extract information from the message parameters. The LOWORD
function, for example, extracts the low-order word (bits 0 through 15) from a message
parameter. Other functions include HIWORD, LOBYTE, and HIBYTE.

The interpretation of the return value depends on the particular message. Consult the
description of each message to determine the appropriate return value.

Because it is possible to call a window procedure recursively, it is important to minimize the
number of local variables that it uses. When processing individual messages, an application
should call functions outside the window procedure to avoid excessive use of local variables,
possibly causing the stack to overflow during deep recursion.

TMT PASCAL
Developer Guide

65

2.3 Designing a Window Procedure

The following example shows the structure of a typical window procedure. The window
procedure uses the message argument in a CASE statement to process. For messages that it
does not process, the window procedure calls the DefWindowProc function.

function MainWndProc conv arg_stdcall (
 _hwnd: HWND, // handle of window
 _uMsg: UINT, // message identifier
 _wParam: WPARAM, // first message parameter
 _lParam: LPARAM // second message parameter
): LRESULT;
begin
 case _uMsg of
 WM_CREATE:
 begin
 // Initialize the window.
 Result := 0;
 end;

 WM_PAINT:
 begin
 // Paint the window's client area.
 Result := 0;
 end;

 WM_SIZE:
 begin
 // Set the size and position of the window.
 Result := 0;
 end;

 WM_DESTROY:
 begin
 // Clean up window-specific data objects.
 Result := 0;
 end;
 //
 // Process other messages.
 /

 else
 Result := DefWindowProc(_hwnd, _uMsg, _wParam,
_lParam);
 end;
end;

2.4 Associating a Window Procedure with a Window Class

One associates a window procedure with a window class when registering the class. You
must fill a TWndClass structure with information about the class, and the lpfnWndProc
member must specify the address of the window procedure. To register the class, pass the
address of TWndClass structure to the RegisterClass function. Once the window class is
registered, the window procedure is automatically associated with each new window created
with that class.

66
Programmer’s Reference

The following example shows how to associate the window procedure in the previous
example with a window class:

var
 wc: TWndClass;
begin
 // Register the main window class.
 with wc do begin
 style := CS_HREDRAW or CS_VREDRAW;
 lpfnWndProc := @MainWndProc;
 cbClsExtra := 0;
 cbWndExtra := 0;
 hInstance := System.hInstance;
 hIcon := LoadIcon(THandle(NIL), IDI_APPLICATION);
 hCursor := LoadCursor(THandle(NIL), IDC_ARROW);
 hbrBackground := GetStockObject(WHITE_BRUSH);
 lpszMenuName := 'MainMenu';
 lpszClassName := 'MainWindowClass';
 end;
 if not RegisterClass(wc) then MyError;

 //
 // Process other messages.
 //
end.

2.5 Example of a Win32 GUI Application
program Hellow;

{$ifndef __WIN32__}
{$define INVALID_TARGET}
{$endif}
{$ifndef __GUI__}
{$define INVALID_TARGET}
{$endif}
{$ifdef INVALID_TARGET}
 This program must be compiled for Win32 GUI target only
{$endif}

uses Windows, MMSystem, Messages;

function MyWndProc conv arg_stdcall (Window: HWND; Mess: UINT;
Wp: WParam; Lp: LParam): LRESULT;
begin
 case Mess of
 WM_PAINT: begin
 declare
 var
 DC: hDC;
 ps: TPaintStruct;
 begin
 DC := BeginPaint(Window, ps);
 TextOut(DC, 0, 0, 'Hello World!', 12);
 EndPaint(Window, ps);
 Result := 0;
 end;
 end;

TMT PASCAL
Developer Guide

67

 WM_DESTROY: begin
 PostQuitMessage(0);
 Result := 0;
 end;
 WM_LBUTTONDOWN: begin
 MessageBox(Window, 'This is my message!',
 'My message box', MB_OK);
 Result := 0;
 end;
 else
 Result := DefWindowProc(Window, Mess, Wp,
Lp);
 end;
end;

var
 wc : TWndClass;
 wnd: HWnd;
 Msg: TMsg;
begin
 FillChar(wc, SizeOf(wc), 0);
 with wc do begin
 style:=CS_HREDRAW + CS_VREDRAW;
 lpfnWndProc := @MyWndProc;
 cbClsExtra := 0;
 cbWndExtra := 0;
 hInstance := System.hInstance;
 hIcon := LoadIcon(THandle(NIL), IDI_APPLICATION);
 hCursor := LoadCursor(THandle(NIL), IDC_ARROW);
 hbrBackGround := COLOR_WINDOW+1;
 lpszMenuName := nil;
 lpszClassName := 'HelloWorld';
 end;
 if RegisterClass(wc) = 0 then
 begin
 Exit;
 end;

 wnd := CreateWindow(wc.lpszClassName, 'GUI Application Demo',
WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, 0, 0,
HInstance, NIL);

 ShowWindow(wnd, SW_RESTORE);
 UpdateWindow(wnd);

 while GetMessage(Msg,0,0,0) do
 begin
 TranslateMessage(Msg);
 DispatchMessage(Msg);
 end;

end.

2.6 Writting Win32 Control Panel Applications

Even though Windows provides a number of standard Control Panel applications (CPL),
one can create additional applications with TMT Pascal to let users examine and modify the
settings and operational modes of specific hardware and software.

68
Programmer’s Reference

2.7 Application Responsibilities and Operation

The primary responsibility of any Control Panel application is to display a dialog box and to
carry out any tasks specified by the user. Despite this responsibility, Control Panel
applications do not provide menus or other direct means for users to access their dialog boxes.
Instead, these applications operate under the control of another application and display their
dialog boxes only when requested by the controlling application.

Control Panel applications are usually controlled by a Windows system utility specifically
designed to give users access to these applications. However, any application can load and
manage Control Panel applications, as long as the controlling application sends messages and
processes return values in the way that the Control Panel applications expect.

Most Control Panel applications display and manage a single dialog box, giving the user
control of the settings and operational modes of a single system component. However, any
given Control Panel application can provide any number of dialog boxes to control any
number of system components. (These individual dialog boxes are sometimes called applets.)
To distinguish between dialog boxes, a Control Panel application typically supplies the
controlling application with a unique icon for each dialog box. The controlling application
displays these icons and the user can choose a dialog box by choosing the corresponding icon.

2.8 Application Entry-Point Function

Every Control Panel application must export the standard entry-point function, CPlApplet.
This function receives requests, in the form of Control Panel (CPL) messages, and carries out
the requested work, such as initializing the application, displaying and managing the dialog
box(es), and closing the application.

When the controlling application first loads the Control Panel application, it retrieves the
address of the CPlApplet function and subsequently uses the address to call the function and
pass it messages. The controlling application may send the following messages:

CPL_DBLCLK
Sent to notify CPlApplet that the user has chosen the icon associated with a given dialog box.
CPlApplet should display the corresponding dialog box and carry out any user-specified
tasks.

CPL_EXIT
Sent after the last CPL_STOP message and immediately before the controlling application
uses the FreeLibrary function to free the DLL containing the Control Panel application.
CPlApplet should free any remaining memory and prepare to close.

CPL_GETCOUNT
Sent after the CPL_GETCOUNT message to prompt CPlApplet to return a number
indicating how many dialog boxes it supports.

CPL_INIT
Sent immediately after the DLL containing the Control Panel application is loaded, to prompt
CPlApplet to perform initialization procedures, including memory allocation.

TMT PASCAL
Developer Guide

69

CPL_INQUIRE
Sent after the CPL_GETCOUNT message, to prompt CPlApplet to provide information
about a specified dialog box. The lParam2 parameter of CPlApplet points to a TCPLInfo
structure.

CPL_NEWINQUIRE
Sent after the CPL_GETCOUNT message, to prompt CPlApplet to provide information
about a specified dialog box. The lParam2 parameter is a pointer to a TNewCPLInfo structure.
For better performance on Windows 95 and Windows NT version 4.0, your application should
process CPL_INQUIRE and not CPL_NEWINQUIRE.

CPL_SELECT
This message is obsolete. Current versions of Windows do not send this message.

CPL_STOP
Sent once for each dialog box before the controlling application closes. CPlApplet should
free any memory associated with the given dialog box.

You will find an example of Control Panel Application in /TMTPL/SAMPLES/WIN32/CPL
subdirectory.

70
Programmer’s Reference

Appendix A

Compiler Directives
Compiler directives, are comments started with the $ symbol. Compiler directives can be used
wherever comments are allowed.

Compiler directives
- begin with {$, /*$ or (*$
- are followed by the name of the directive
- end with }, */ or *)

Note that // and -- comments can not be used to specify compiler directive
Compiler directives come in three varieties:
Switch directives turn compiler features on or switches off when + or - are specified after the
directive name.
Parameter directives specify parameters that affect the compilation.
Conditional directives control conditional compilation of parts of the source text.

A.1 Conditional directives

Targets: MS-DOS, OS/2, Win32

Conditional compilation is based on the evaluation of conditional symbols.

$DEFINE Defines a conditional symbol
$ELSE Compiles or ignores a portion of source text
$ENDIF Ends the conditional compilation
$IFDEF Compiles source text if Name is defined
$IFNDEF Compiles source text if Name is NOT defined
$IFOPT Compiles source text if a compiler switch is in a specifies state(+ or -)
$UNDEF Undefines a previously defined conditional symbol

A.2 Switch and Parameter Directives

Targets: MS-DOS, OS/2, Win32

$A: Data Align Switch
Switches on/off word-alignment of variables and typed constants

Syntax:
{$A+} or {$A-}

TMT PASCAL
Developer Guide

71

Default:
{A+}

Remarks:
The data align switch has no affect on structures and objects alignment. Use $OA compiler
directive to switch on/off structures and objects alignment.

$AC: Ada-Style Comments Switch
Switches on/off Ada-style comments recognition.

Syntax:
{$AC+} or {$AC-}

Default:
{AC-}

Remarks:
Keep in mind that Ada-style comments are not longer supported by default.

$AMD: AMD 3DNow! Assembler Instructions Switch
Enables/disables AMD 3DNow! instructions support in built-in assembler.

Syntax:
{$AMD+} or {$AMD-}

Default:
{AMD+}

$B: Boolean Evaluation Switch
Switches on/off the two different models of code generation for the AND and OR Boolean
operators.

Syntax:
{$B+} or {$B-}

Default:
{$B-}

Remarks:
If {$B+} defined, the compiler generates code for complete boolean expression evaluation.
I.e. every operand of a boolean expression built from the AND and OR operators is
guaranteed to be evaluated, even when the result of the entire expression is already known.

If {$B-} defined, the compiler generates code for short-circuit boolean-expression
evaluation. I.e. evaluation stops as soon as the result of the entire expression becomes evident.

$CC: C/C++ Style Comments Switch
Switches on/off C/C++ style comments recognition.

Syntax:
{$CC+} or {$CC-}

72
Programmer’s Reference

Default:
{CC+}

$D: Debug Information Switch
Switches on/off the generation of debug information.

Syntax:
{$D+} or {$D-}

Default:
{$D+}

Remarks:
Debug information consists of a line-number table for each procedure. The table maps object-
code addresses into source-text line numbers.

If {$D+} is defined, you can use the built-in Debugger to single-step, step over and set
breakpoints in a module.

Debug information increases the size of unit files and increases memory usage when you
compile programs that use the unit.

The Debug Information switch is usually used with the Local Symbols switch.

See also: $L: Local Symbol Information Switch.

$I: I/O-Checking Switch
Enables or disables the automatic code generation that checks the result of a call to an I/O
procedure.

Syntax:
{$I+} or {$I-}

Default:
{$I+}

Remarks:
If an I/O procedure returns a non-zero I/O result when the $I switch is on, the program
terminates, displaying a run-time error message.

When the $I switch is off, you should use the IOResult function to check for I/O errors.

$Include File Directive
Instructs the compiler to include the named file in the compilation.

Syntax:
{$I FileName}

Remarks:
The included file is inserted in the compiled text right after the {$I FileName} directive.

$L: Link Object File Directive
Instructs the compiler to link the named file with the program or unit being compiled.

TMT PASCAL
Developer Guide

73

Syntax:
{$L FileName}

Remarks:
The {$L FileName} directive is used to link with code written in assembly language for
sub-programs which are declared to be external.

The named file must be an Intel relocatable object file (.OBJ file).

See also: External Declaration

$L: Local Symbol Information Switch
Enables or disables the generation of local symbol information.

Syntax:
{$L+} or {$L-}

Default:
{$L+}

Remarks:
Local symbol information consists of the symbols in the module’s implementation part
(names and types of all local variables and constants in a module), and the symbols within the
module’s procedures and functions.

$MAP: Map File Generation Switch
Switches on/off warnings generation.

Syntax:
{$MAP+} or {$MAP-}

Default:
{MAP-}

Remarks:
If {$MAP+} defined, TMT Pascal will generate a map file.

$MMX: Intel MMX Assembler Instructions Switch
Enables/disables Intel MMX instructions support in built-in assembler.

Syntax:
{$MMX+} or {$MMX-}

Default:
{MMX+}

$OA: Objects and Structures Align Switch
Switches on/off word-alignment of objects and structures.

Syntax:
{$OA+} or {$OA-}

Default:
{OA-}

74
Programmer’s Reference

Remark:
The data align switch has no affect on variables and typed constants alignment. Use $A
compiler directive to switch on/off variables and typed constants alignment.

$OPT: Full Optimization Switch
Switches on/off full optimization ({OPTREG+} & {OPTFRM+}).

Syntax:
{$OPT+} or {$OPT-}

Default:
{OPT+}

$OPTFRM: Stack Frame Optimization Switch
Switches on/off stack frame optimization.

Syntax:
{$OPTFRM+} or {$OPTFRM-}

Default:
{OPTFRM+}

$OPTREG: Register Optimization Switch
Switches on/off register optimization.

Syntax:
{$OPTREG+} or {$OPTREG-}

Default:
{OPTREG+}

$P: Open String Parameters Switch
Controls the meaning of variable parameters declared using the string keyword.

Syntax:
{$P+} or {$P-}

Default:
{$P+}

Remarks:
If {$P-} defined, variable parameters declared using the string keyword are normal variable
parameters.

If {$P+} defined, variable parameters declared using the string keyword are open string
parameters.

$Q: Overflow Checking Switch
Controls the generation of overflow checking code.

Syntax:
{$Q+} or {$Q-}

TMT PASCAL
Developer Guide

75

Default:
{$Q-}

Remarks:
The $Q switch is usually used in conjunction with the $R switch.

Enabling overflow checking slows down your program and makes it larger. We recommend to
use {$Q+} only for debugging purposes.

$R: Range-Checking Switch
Enables and disables the generation of range-checking code.

Syntax:
{$R+} or {$R-}

Default:
{$R-}

Remarks:
The $R switch is usually used in conjunction with the $Q switch.

If {$R+} defined, all array and string-indexing expressions are verified as being within the
defined bounds all assignments to scalar and subrange variables are checked to be within
range.

If a range-check fails, the program terminates and displays a run-time error message.

Enabling range-checking slows down your program and makes it larger. We recommend to
use {$R+} only for debugging purposes.

Keep in mind that range-checking mode affects even on «+», «*» and Shl operators.

$R: Resource File

Targets: OS/2, Win32
Specifies the name of a resource file to be included in an application or library. The named
file must be valid resource file (Windows 32-bit or OS/2 format) and the default extension for
filenames is .RES.

Syntax:
{$R filename.RES}

Remarks:
When a {$R filename} directive is used in a unit, the specified file name is simply recorded in
the resulting unit file. No checks are made at that point to ensure that the filename is correct
and that it specifies an existing file.

Win32 target:
The old 16-bit Windows resource format is not allowed.

$S: Stack-Overflow Checking Switch
Enables and disables the generation of stack-overflow checking code.

Syntax:
{$S+} or {$S-}

76
Programmer’s Reference

Default:
{$S-}

Remarks:
If {$S+} is defined, the compiler generates code at the beginning of each procedure or
function to check whether there is sufficient stack space for the local variables and other
temporary storage.

Important! This option is not supported by the current version of the compiler and will
be ignored.

$T: Type-Checked Pointers Switch
Controls the types of pointer values generated by the @ operator.

Syntax:
{$T+} or {$T-}

Default:
{$T-}

Remarks:
If {$T-} is defined, the resulting type of the @ operator is always an untyped pointer.
Otherwise the type of the result is ^T, where T is compatible only with other pointers to the
type of the variable.

$TPO: Typed Inc/Dec Operations Switch
Enables/disables typed Inc/Dec operations on pointers.

Syntax:
{$TPO+} or {$TPO-}

Default:
{$T+}

Example:

var
 a: ^DWORD;
begin
 a := Pointer(0);
 inc(a);
 Writeln(Longint(a));
end.

The sample above prints 1 if typed operations are disabled ($TPO-}. If typed operations are
enabled ($TPO+}, the application prints 4.

$V: Var-String Checking Switch
Controls type-checking on strings passed as variable parameters.

Syntax:
{$V+} or {$V-}

Default:
{$V+}

TMT PASCAL
Developer Guide

77

Remark:
If {$V+} is defined, strict type-checking is performed, requiring the formal and actual
parameters to be of identical string types. Otherwise any string-type variable is allowed as an
actual parameter, even if the declared maximum length is not the same as that of the formal
parameter.

$W: Warnings Generation Switch
Switches on/off warnings generation.

Syntax:
{$W+} or {$W-}

Default:
{W+}

Remark:
If {$W+} defined, TMT Pascal will show compilation warnings.

$X: Extended Syntax Switch
Enables or disables Turbo Pascal’s extended syntax.

Syntax:
{$X+} or {$X-}

Default:
{$X+}

Remarks:
If {$X+} is defined, function calls can be used as statements. The result of a function call
can be discarded.

A.3 Predefined Symbols

Targets: MS-DOS, OS/2, Win32

The following symbols are predefined:

MSDOS - for DOS target
__TMT__ - always
__VER3__ - always for version 3.xx
__MULTITARGET__ - always for TMT Pascal multi-target
__DOS__ - for DOS target
__OS2__ - for all OS/2 targets
__DLL__ - for OS/2 and Win32 DLL targets
__PM__ - for OS/2 Presentation manager targets
__FS__ - for OS/2 Full Screen targets
__WIN32__ - for all Win32 targets
__CON__ - for OS/2, Win32 and MS-DOS console targets
__GUI__ - for Win32 GUI targets

78
Programmer’s Reference

Appendix B

Run-time Error Codes

The following error codes are predefined:

Code Meaning
1 Invalid function number
2 File not found
3 Path not found
4 Too many open files
5 File access denied
6 Invalid file handle
12 Invalid file access code
15 Invalid drive number
16 Cannot remove current directory
17 Cannot rename across drives
18 No more files
100 Disk read error
101 Disk write error
102 File not assigned
103 File not open
104 File not open for input
105 File not open for output
106 Invalid numeric format
150 Disk is write protected
151 Bad drive request structure length
152 Drive not ready
154 CRC error in data
156 Disk seek error
157 Unknown media type
158 Sector not found
159 Printer out of paper
160 Device write fault
161 Device read fault
162 Hardware failure
200 Division by zero
201 Range check error
202 Stack overflow error
203 Heap overflow error
204 Invalid pointer operation
205 Floating point overflow
206 Floating point underflow
207 Invalid floating point operation
208 Overlay manager not installed
209 Overlay file read error
210 Object not initialized
211 Call to abstract method
212 Stream registration error
213 Collection index out of range

TMT PASCAL
Developer Guide

79

214 Collection overflow error
215 Arithmetic overflow error
216 General protection fault
217 Invalid operation code
300 File IO error
301 Non-matched array bounds
302 Non-local procedure pointer
303 Procedure pointer out of scope
304 Function not implemented
305 Breakpoint error
306 Break by Ctrl/C
307 Break by Ctrl/Break
308 Break by other process
309 No floating point coprocessor

80
Programmer’s Reference

Appendix C

PMODE/W DOS Extender
TMT Pascal uses the PMODEW v1.33 based extender. This chapter of the HELP file is based
on the original manual Copyright © 1994-1997, by Charles Scheffold and Thomas Pytel. All
rights reserved. All trademarks used in this documentation are property of their respective
owners.

C.1 About PMODE/W

PMODE/W allows DOS programs to run in full 32 bit protected mode, with access to all
memory available in the system. PMODE/W basically extends the DOS environment to
protected mode and provides a simple interface to the real mode DOS system services for
your code. PMODE/W takes care of all aspects of running the system in protected mode and
maintaining compatibility with the underlying real mode software. PMODE/W deals with low
level necessities such as descriptor tables, memory management, IRQ and interrupt
redirection, real/protected mode translation functions, exception handling, and other
miscellaneous aspects of running in protected mode. Your code does not need to deal with
specific aspects of different systems, such as XMS/EMS/VCPI/DPMI availability.
PMODE/W will run on top of almost any system and provide common protected mode
services to your program through the DPMI interface specification, as well as most standard
DOS functions extended for protected mode use.

PMODE/W is the stub and extender in one. The generated executable contains the
PMODE/W extender within it as the stub. When run, PMODE/W will take care of setting up
the system and executing the protected mode portion of the program. Several years have gone
into the development of PMODE/W. It is now a fairly mature DOS extender, and has gone
through its fair share of bugs and incompatibilities. It is at this point, a very stable protected
mode system. Great pains have gone into the optimization and testing of PMODE/W. Our
major goals have been speed, size, and stability. We now feel that we have achieved a good
deal of those things. But don’t take our word for it; try it yourself. Just plug PMODE/W into
any popular program which uses DOS/4GW.

To sum it up, if you are looking for a good solid, stable, and fast extender, PMODE/W may be
just what you need.
Here are the advantages of PMODE/W:
No external extender required (everything needed to execute is in the EXE). Small size (less
than 12k for the entire extender program). Compression of protected mode executables. Low
extended memory overhead. Does not require ANY extended memory to load OR execute.
Fast execution.

Our major concerns in developing PMODE/W were speed, size, and stability. PMODE/W
itself was written entirely in assembly. When running under PMODE/W, your code will be
running at a privilege level of zero, the highest and fastest. PMODE/W does not virtualize
what it does not need to, and does not invoke any protected mode mechanism that is slow. For
example, if the system is running clean or under XMS, PMODE/W does not turn on paging.
Under a memory manager which provides both VCPI and DPMI services, PMODE/W will

TMT PASCAL
Developer Guide

81

opt for VCPI protected mode which is significantly faster than DPMI. When PMODE/W
makes calls to real mode, it switches the system into actual real mode rather than the slower
V86 mode (when it can, under VCPI this is not possible, control must be passed back to the
VCPI server). In terms of speed, when your code is running under PMODE/W, it is running as
fast as the system will allow. In terms of size on disk, we need say no more than for you to
look at the size of the PMODE/W executable and compare it to other extenders. In terms of
memory size, you may do tests yourself to confirm that PMODE/W does indeed suck up a lot
less memory at run-time than the competition. In fact, PMODE/W will run even if there is
absolutely no extended memory in the system (assuming of course there is enough low
memory for the program). To be fair, we must say that we squished the PMODE/W
executable with our own compression program written expressly for the purpose. This
demonstrates the extent we took most of our optimizations to.

When run under a clean system, XMS, or VCPI, PMODE/W has control of protected mode. In
this case, it can set up the system to run as fast as possible under the various conditions. Under
DPMI, the DPMI host of the system will have full protected mode control and PMODE/W
will install its DOS extensions on top of that. If the system provides both VCPI and DPMI
services, PMODE/W will use the VCPI services for faster execution, unless instructed not to
by the setup program. When PMODE/W does have protected mode control under
clean/XMS/VCPI, it runs all code at a privilege level of zero. In addition, under a clean or
XMS system, paging will not be enabled. This is only a minor speed increase, but there is no
real need to manage paging.

PMODE/W provides a subset of DPMI 0.9 function calls and general functionality when a
DPMI host is not present. PMODE/W will pass any software interrupts from protected mode
to their default real mode handlers, provided no protected mode handlers have been installed
for them, just as DPMI will. The general registers will be passed on to the real mode handler,
but the segment registers cannot be as they have different meanings in real mode and
protected mode. The flags will be passed back from the real mode handler. This provides a
simple interface to all real mode interrupt routines which do not take parameters in the
segment registers, for example, INT 16h function 00h.

Any IRQs that occur in protected mode and have not been hooked by a protected mode
handler will be sent on to their real mode handlers. If an IRQ occurs in real mode, and a
protected mode handler has hooked that IRQ, it will be sent to the protected mode handler
first. The protected mode handler may chain to the real mode handler for that IRQ by calling
the previous protected mode handler for that IRQ. This behavior is in accordance with the
DPMI standard. If you hook a protected mode IRQ (INT 31h function 0205h), then hook the
same IRQ in real mode (INT 31h function 0201h), the protected mode handler will be called if
the IRQ occurs in protected mode, and the real mode handler will handle the IRQs if they
occur in real mode. Setting up two handlers like this assures minimal latency. This means a
handler will get control when the IRQ occurs as soon as physically possible. PMODE/W does
have to intervene in the IRQ process, however, when the low 8 IRQs are mapped to INTs 08h-
15h to differentiate IRQs from CPU exceptions.

In accordance with DPMI specifications, PMODE/W will pass up software interrupts 1ch
(BIOS timer tick), 23h (DOS CTRL+C), and 24h (DOS critical error) from real mode to
protected mode. This means that those interrupts can be hooked directly in protected mode
without having to set up a callback mechanism yourself. PMODE/W will also pass interrupt
1bh (BIOS CTRL+BREAK) from real mode up to protected mode. This is not a DPMI
requirement, but it is necessary for the sake of compatibility with DOS/4GW. Another
departure by PMODE/W from official DPMI specifications is in extended memory allocation.
DPMI documentation states that the block of extended memory allocated through function
0501h is guaranteed at least paragraph alignment. The PMODE/W DPMI implementation will
enforce only DWORD alignment.

When a PMODE/W executable is run, PMODE/W will attempt to switch the system into
protected mode and load the protected mode portion of the same executable. If there is some
error, not enough memory, or a system incompatibility, PMODE/W will exit with an error
message. If loading was successful, PMODE/W will pass execution control on to the program.

82
Programmer’s Reference

PMODE/W will load any 16 bit code and data into low memory, but 32 bit code and data may
be loaded into low or extended memory depending on availability.

There are a number of modifiable parameters in the PMODE/W extender executable that
affect protected mode execution. For the most part, these parameters deal with memory.
PMODE/W allocates one large block of extended memory for its pool from which it provides
memory to its client program. There is a maximum value for the extended memory to be
allocated. By default, the maximum is all of the extended memory in the system. The
maximum value reflects the size of the block you want PMODE/W to take from the system,
not necessarily the size of the largest block available to the default GetMem procedures. You
may set the maximum to zero to indicate you do not want PMODE/W to allocate ANY
extended memory. The amount of memory that you allow PMODE/W to allocate from the
system determines how much extended memory will be left to other if you shell out of your
PMODE/W program.

Another variable specifies the amount of low memory for PMODE/W to TRY to keep free. If
PMODE/W can, it will accommodate this value by loading 32 bit code and data into extended
memory. If there is not enough extended memory available for this, 32 bit code and data will
be loaded into low memory anyway. If PMODE/W can not keep this much low memory free,
it will not exit with an error message. Setting this parameter to a high value will, in effect,
duplicate the DOS/4GW behavior of loading all 32 bit code and data into extended memory.
If you do not necessarily need any extra low memory free during the execution of your
program, you may set this value to zero.

There is a group of parameters that specify the number and size of nested mode switch stacks.
Whenever you make a call to real mode, or a callback or IRQ is passed from real mode to its
routine in protected mode, a nested stack is used. These parameters have meaning only if the
program is not run under a DPMI system. If a DPMI host is in place when the program is run,
it provides its own nested stacks for mode switches. The number of nested stacks directly
affects the number of nested mode switches your program can make using the various mode
switch methods. The size of both the real mode and protected mode nested stacks can also be
specified. By default, these values are high enough for normal operation. However, if you
intend to use a lot of stack variables in a protected mode IRQ handler, or a lot of recursive
calls, you may need to increase the size of the protected mode nested stacks. The more nested
stacks you specify, and the larger they are, the more low memory is needed by PMODE/W
during execution.

Another group of variables that has meaning only under clean/XMS/VCPI execution specify
the number of selectors and DPMI callbacks you want PMODE/W to make available. The
more selectors and callbacks you ask for, the more low memory is used by PMODE/W,
though the amount of low memory used for each is quite low so that large numbers of each
can be specified. There will usually be a little less than the number of selectors and callbacks
you request available to your program due to the protected mode system and Pascal code
using some of them. For this reason you should request 20h-40h more selectors and 2-4 more
callbacks than you will need in your program.

There are four other miscellaneous parameters that can be set. There is a maximum number of
page tables to use under a VCPI system. Each page table allocated requires 4k of low memory
to be used by PMODE/W and maps 4M of memory. This directly affects the maximum
amount of extended memory available under a VCPI system. This parameter is only the
maximum number of page tables to allow. At run-time, only as many page tables will be
allocated as are needed. Under a clean/XMS system, no page tables are required, so this
parameter has no meaning. But under VCPI, you may want to restrict the number of page
tables to save low memory if you do not need more than a certain amount of extended
memory. This puts a maximum ceiling on extended memory under VCPI which may be lower
than the maximum actually specified in the other variable. The second parameter specifies the
order of DPMI and VCPI detection. By default, VCPI will be checked before DPMI, but you
may set DPMI to be checked before VCPI so that under a system which supports both VCPI
and DPMI, DPMI will be used. The third variable specifies how many pages to reserve for
physical address mapping calls (INT 31h function 0800h) under VCPI. Under XMS or a clean
system, paging is not enabled, and PMODE/W does not need pages for physical address
mapping. Each page will allow you to map up to 4M of address space and takes up 4k of

TMT PASCAL
Developer Guide

83

extended memory. So for example, if you intend to map a 2M frame buffer of a video card,
you will need only one page. You may set this parameter to zero if you do not intend to map
any physical addresses. The fourth parameter specifies whether PMODE/W displays its
banner at startup. This may be desirable to indicate that the program is indeed running, and
has not crashed, as allocating memory from certain VCPI servers can be a slow process.

C.2 Supported DPMI INT 31h functions

PMODE/W duplicates a subset of DPMI protected mode functions. These functions are
available ONLY in protected through INT 31h. They provide descriptor services, extended
memory services, interrupt services, translation services, and some other miscellaneous
things. A function is called by setting AX to the function code, setting any other registers for
the function, and executing INT 31h. Upon return, the carry flag will be clear if the function
was successful. If the carry flag is set, the function failed. All other registers are preserved
unless otherwise specified. In addition to the functions listed here, functions 0600h, 0601h,
0702h, and 0703h will return with the carry flag clear to stay compatible with code that uses
those particular DPMI functions.

Function 0000h - Allocate Descriptors

Allocates one or more descriptors in the client’s descriptor table. The descriptor(s) allocated
must be initialized by the application with other function calls.

In:
AX = 0000h
CX = number of descriptors to allocate

Out:
if successful:

carry flag clear
AX = base selector

if failed:
carry flag set

Remarks:
If more that one descriptor is requested, the function returns a base selector referencing the
first of a contiguous array of descriptors. The selector values for subsequent descriptors in the
array can be calculated by adding the value returned by INT 31h function 0003h.
The allocated descriptor(s) will be set to expand-up writeable data, with the present bit set and
a base and limit of zero. The privilege level of the descriptor(s) will match the client’s code
segment privilege level.

Function 0001h - Free Descriptor

Frees a descriptor.

In:
 AX = 0001h
 BX = selector for the descriptor to free

Out:
if successful:
 carry flag clear

84
Programmer’s Reference

if failed:
 carry flag set

Remarks:
Each descriptor allocated with INT 31h function 0000h must be freed individually with the
function. Even if it was previously allocated as part of a contiguous array of descriptors.
Under DPMI 1.0/VCPI/XMS/raw, any segment registers which contain the selector being
freed are zeroed by this function.

Function 0002h - Segment to Descriptor

Converts a real mode segment into a protected mode descriptor.

In:
 AX = 0002h
 BX = real mode segment

Out:
if successful:
 carry flag clear
 AX = selector
if failed:
 carry flag set

Remarks:
Multiple calls for the same real mode segment return the same selector. The returned
descriptor should never be modified or freed.

Function 0003 - Get Selector Increment Value

The Allocate Descriptors function (0000h) can allocate an array of contiguous descriptors, but
only return a selector for the first descriptor. The value returned by this function can be used
to calculate the selectors for subsequent descriptors in the array.

In:
AX = 0003h

Out:
always successful:
 carry flag clear
 AX = selector increment value

Remarks:
The increment value is always a power of two.

Function 0006 - Get Segment Base Address

Returns the 32bit linear base address from the descriptor table for the specified segment.

In:
 AX = 0006h
 BX = selector

Out:
if successful:

TMT PASCAL
Developer Guide

85

 carry flag clear
 CX:DX = 32bit linear base address of segment
if failed:
 carry flag set

Remarks:
Client programs must use the LSL instruction to query the limit for a descriptor.

Function 0007 - Set Segment Base Address

Sets the 32bit linear base address field in the descriptor for the specified segment.

In:
 AX = 0007h
 BX = selector

CX:DX = 32bit linear base address of segment

Out:
if successful:
 carry flag clear
if failed:
 carry flag set

Remarks:
Under DPMI 1.0/VCPI/XMS/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed. We hope you
have enough sense not to try to modify your current CS or SS descriptor.

Function 0008 - Set Segment Limit

Sets the limit field in the descriptor for the specified segment.

In:
 AX = 0008h
 BX = selector

 CX:DX = 32bit segment limit

Out:
if successful:

carry flag clear
if failed:

carry flag set

Remarks:
The value supplied to the function in CX:DX is the byte length of the segment-1. Segment
limits greater than or equal to 1M must be page aligned. That is, they must have the low 12
bits set.

This function has an implicit effect on the “G” bit in the segment’s descriptor. Client
programs must use the LSL instruction to query the limit for a descriptor.

Under DPMI 1.0/VCPI/XMS/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed. We hope you
have enough sense not to try to modify your current CS or SS descriptor.

86
Programmer’s Reference

Function 0009 - Set Descriptor Access Rights

Modifies the access rights field in the descriptor for the specified segment.

In:
 AX = 0009h
 BX = selector
 CX = access rights/type word

Out:
if successful:
 carry flag clear
 if failed:
 carry flag set

Remarks:
The access rights/type word passed to the function in CX has the following format:

 G - 0=byte granular, 1=page granular
 B/D - 0=default 16bit, 1=default 32bit
 DPL - must be equal to caller's CPL
 C/D - 0=data, 1=code
 E/C - data: 0=expand-up, 1=expand-down
 code: must be 0 (non-conforming)
 W/R - data: 0=read, 1=read/write
 code: must be 1 (readable)
 A - 0=not accessed, 1=accessed
 0 - must be 0
 1 - must be 1
 ? - ignored
Client programs should use the LAR instruction to examine the access rights of a descriptor.

Under DPMI 1.0/VCPI/XMS/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed.

We hope you have enough sense not to try to modify your current CS or SS descriptor.

Function 000A - Create Alias Descriptor

Creates a new data descriptor that has the same base and limit as the specified descriptor.

In:
 AX = 000ah
 BX = selector

Out:
if successful:
 carry flag clear
 AX = data selector (alias)
 if failed:
 carry flag set

TMT PASCAL
Developer Guide

87

Remarks:
The selector supplied to the function may be either a data descriptor or a code descriptor. The
alias descriptor created is always an expand-up writeable data segment.

The descriptor alias returned by this function will not track changes to the original descriptor.

Function 000B - Get Descriptor

Copies the descriptor table entry for the specified selector into an 8 byte buffer.

In:
 AX = 000bh
 BX = selector
 ES:EDI = selector:offset of 8 byte buffer

Out:
 if successful:
 carry flag clear
 buffer pointed to by ES:EDI contains descriptor
 if failed:
 carry flag set

Function 000C - Set Descriptor

Copies the contents of an 8 byte buffer into the descriptor for the specified selector.

In:
 AX = 000ch
 BX = selector
 ES:EDI = selector:offset of 8 byte buffer containing
descriptor

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set

Remarks:
The descriptors access rights/type word at offset 5 within the descriptor follows the same
format and restrictions as the access rights/type parameter CX to the Set Descriptor Access
Rights function (0009h).

Under DPMI 1.0/VCPI/XMS/raw, any segment register which contains the selector specified
in register BX will be reloaded. DPMI 0.9 may do this, but it is not guaranteed.

We hope you have enough sense not to try to modify your current CS or SS descriptor or the
descriptor of the buffer.

Function 0100 - Allocate DOS Memory Block

Allocates low memory through DOS function 48h and allocates it a descriptor.

In:
 AX = 0100h

88
Programmer’s Reference

 BX = paragraphs to allocate

Out:
if successful:
 carry flag clear
 AX = real mode segment address
 DX = protected mode selector for memory block
 if failed:
 carry flag set
 AX = DOS error code
 BX = size of largest available block

Function 0101 - Free DOS Memory Block

Frees a low memory block previously allocated by function 0100h.

In:
 AX = 0101h
 DX = protected mode selector for memory block

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set
 AX = DOS error code

Function 0102 - Resize DOS Memory Block

Resizes a low memory block previously allocated by function 0100h.

In:
 AX = 0102h
 BX = new block size in paragraphs
 DX = protected mode selector for memory block

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set
 AX = DOS error code
 BX = size of largest available block

Function 0200 - Get Real Mode Interrupt Vector

Returns the real mode segment:offset for the specified interrupt vector.

In:
 AX = 0200h
 BL = interrupt number

Out:
always successful:
 carry flag clear
 CX:DX = segment:offset of real mode interrupt handler

TMT PASCAL
Developer Guide

89

Remarks:
The value returned in CX is a real mode segment address, not a protected mode selector.

Function 0201 - Set Real Mode Interrupt Vector

Sets the real mode segment:offset for the specified interrupt vector.

In:
 AX = 0201h
 BL = interrupt number
 CX:DX = segment:offset of real mode interrupt handler

Out:
 always successful:
 carry flag clear

Remark:
The value passed in CX must be a real mode segment address, not a protected mode selector.
Consequently, the interrupt handler must either reside in DOS memory (below the 1M
boundary) or the client must allocate a real mode callback address.

Function 0202 - Get Processor Exception Handler Vector

Returns the address of the current protected mode exception handler for the specified
exception number.

In:
 AX = 0202h
 BL = exception number (00h-1fh)

Out:
 if successful:
 carry flag clear
 CX:EDX = selector:offset of exception handler
 if failed:
 carry flag set

Remarks:
PMODE/W handles exceptions under clean/XMS/VCPI environments. Under a DPMI
environment, exception handling is provided by the DPMI host.

PMODE/W only traps exceptions 0 through 14. The default behavior is to terminate execution
and do a debug dump. PMODE/W will terminate on exceptions 0, 1, 2, 3, 4, 5, and 7, instead
of passing them down to the real mode handlers as DPMI specifications state.

Function 0203 - Set Processor Exception Handler Vector

Sets the address of a handler for a CPU exception or fault, allowing a protected mode
application to intercept processor exceptions.

In:
 AX = 0203h
 BL = exception number (00h-1fh)

90
Programmer’s Reference

 CX:EDX = selector:offset of exception handler

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set

Remarks:
PMODE/W handles exceptions under clean/XMS/VCPI environments. Under a DPMI
environment, exception handling is provided by the DPMI host.

PMODE/W only traps exceptions 0 through 14. The default behavior is to terminate execution
and do a debug dump. PMODE/W will terminate on exceptions 0, 1, 2, 3, 4, 5, and 7, instead
of passing them down to the real mode handlers as DPMI specifications state.

If you wish to hook one of the low 8 interrupts, you must hook it as an exception. It will not
be called if you hook it with function 0205h.

Function 0204 - Get Protected Mode Interrupt Vector

Returns the address of the current protected mode interrupt handler for the specified interrupt.

In:
 AX = 0204h
 BL = interrupt number

Out:
always successful:
 carry flag clear
 CX:EDX = selector:offset of protected mode interrupt
handler

Remarks:
The value returned in CX is a valid protected mode selector, not a real mode segment address.

Function 0205 - Set Protected Mode Interrupt Vector

Sets the address of the protected mode interrupt handler for the specified interrupt.

In:
 AX = 0205h
 BL = interrupt number
 CX:EDX = selector offset of protected mode interrupt handler

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set

Remarks:
The value passed in CX must be a valid protected mode selector, not a real mode segment
address.

If you wish to hook one of the low 8 interrupts, you must hook it as an exception. It will not
be called if you hook it with function 0205h.

TMT PASCAL
Developer Guide

91

Function 0300 - Simulate Real Mode Interrupt

Simulates an interrupt in real mode. The function transfers control to the address specified by
the real mode interrupt vector. The real mode handler must return by executing an IRET.

In:
 AX = 0300h
 BL = interrupt number
 BH = must be 0
 CX = number of words to copy from the protected mode
stack to the real mode stack
ES:EDI = selector:offset of real mode register data structure
in the following format:

 Offset Length Contents
 00h 4 EDI
 04h 4 ESI
 08h 4 EBP
 0ch 4 reserved, ignored
 10h 4 EBX
 14h 4 EDX
 18h 4 ECX
 1ch 4 EAX
 20h 2 CPU status flags
 22h 2 ES
 24h 2 DS
 26h 2 FS
 28h 2 GS
 2ah 2 IP (reserved, ignored)
 2ch 2 CS (reserved, ignored)
 2eh 2 SP
 30h 2 SS

Out:
 if successful:
 carry flag clear
 ES:EDI = selector offset of modified real mode register
data structure
 if failed:
 carry flag set

Remarks:
The CS:IP in the real mode register data structure is ignored by this function. The appropriate
interrupt handler will be called based on the value passed in BL.

If the SS:SP fields in the real mode register data structure are zero, a real mode stack will be
provided by the host. Otherwise the real mode SS:SP will be set to the specified values before
the interrupt handler is called.

The flags specified in the real mode register data structure will be put on the real mode
interrupt handler’s IRET frame. The interrupt handler will be called with the interrupt and
trace flags clear.

Values placed in the segment register positions of the data structure must be valid for real
mode. That is, the values must be paragraph addresses, not protected mode selectors.

The target real mode handler must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks while it is running, but must
return on the same stack that it was called on and must return with an IRET.

92
Programmer’s Reference

When this function returns, the real mode register data structure will contain the values that
were returned by the real mode interrupt handler. The CS:IP and SS:SP values will be
unmodified in the data structure.

It is the caller’s responsibility to remove any parameters that were pushed on the protected
mode stack.

Function 0301 - Call Real Mode Procedure With Far Return Frame

Simulates a FAR CALL to a real mode procedure. The called procedure must return by
executing a RETF instruction.

In:
 AX = 0301h
 BH = must be 0
 CX = number of words to copy from the protected mode
stack to the real mode stack
ES:EDI = selector:offset of real mode register data structure
in the following format:

 Offset Length Contents
 00h 4 EDI
 04h 4 ESI
 08h 4 EBP
 0ch 4 reserved, ignored
 10h 4 EBX
 14h 4 EDX
 18h 4 ECX
 1ch 4 EAX
 20h 2 CPU status flags
 22h 2 ES
 24h 2 DS
 26h 2 FS
 28h 2 GS
 2ah 2 IP
 2ch 2 CS
 2eh 2 SP
 30h 2 SS

Out:
 if successful:
 carry flag clear
 ES:EDI = selector offset of modified real mode register
data structure
 if failed:
 carry flag set

Remarks:
The CS:IP in the real mode register data structure specifies the address of the real mode
procedure to call.

If the SS:SP fields in the real mode register data structure are zero, a real mode stack will be
provided by the host. Otherwise the real mode SS:SP will be set to the specified values before
the procedure is called.

Values placed in the segment register positions of the data structure must be valid for real
mode. That is, the values must be paragraph addresses, not protected mode selectors.

The target real mode procedure must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks while it is running, but must

TMT PASCAL
Developer Guide

93

return on the same stack that it was called on and must return with a RETF and should not
clear the stack of any parameters that were passed to it on the stack.

When this function returns, the real mode register data structure will contain the values that
were returned by the real mode procedure. The CS:IP and SS:SP values will be unmodified in
the data structure.

It is the caller’s responsibility to remove any parameters that were pushed on the protected
mode stack.

Function 0302 - Call Real Mode Procedure With IRET Frame

Simulates a FAR CALL with flags pushed on the stack to a real mode routine. The real mode
procedure must return by executing an IRET instruction or a RETF 2.

In:
 AX = 0302h
 BH = must be 0
 CX = number of words to copy from the protected mode
stack to the real mode stack
 ES:EDI = selector:offset of real mode register data structure
in the following format:
 Offset Length Contents
 00h 4 EDI
 04h 4 ESI
 08h 4 EBP
 0ch 4 reserved, ignored
 10h 4 EBX
 14h 4 EDX
 18h 4 ECX
 1ch 4 EAX
 20h 2 CPU status flags
 22h 2 ES
 24h 2 DS
 26h 2 FS
 28h 2 GS
 2ah 2 IP
 2ch 2 CS
 2eh 2 SP
 30h 2 SS

Out:
if successful:
 carry flag clear
 ES:EDI = selector offset of modified real mode register
data structure
 if failed:
 carry flag set

Remarks:
The CS:IP in the real mode register data structure specifies the address of the real mode
procedure to call.

If the SS:SP fields in the real mode register data structure are zero, a real mode stack will be
provided by the host. Otherwise the real mode SS:SP will be set to the specified values before
the procedure is called.

The flags specified in the real mode register data structure will be put on the real mode
procedure’s IRET frame. The procedure will be called with the interrupt and trace flags clear.

94
Programmer’s Reference

Values placed in the segment register positions of the data structure must be valid for real
mode. That is, the values must be paragraph addresses, not protected mode selectors.

The target real mode procedure must return with the stack in the same state as when it was
called. This means that the real mode code may switch stacks while it is running, but must
return on the same stack that it was called on and must return with an IRET or discard the
flags from the stack with a RETF 2 and should not clear the stack of any parameters that were
passed to it on the stack.

When this function returns, the real mode register data structure will contain the values that
were returned by the real mode procedure. The CS:IP and SS:SP values will be unmodified in
the data structure.

It is the caller’s responsibility to remove any parameters that were pushed on the protected
mode stack.

Function 0303 - Allocate Real Mode Callback Address

Returns a unique real mode segment:offset, known as a “real mode callback”, that will
transfer control from real mode to a protected mode procedure. Callback addresses obtained
with this function can be passed by a protected mode program to a real mode application,
interrupt handler, device driver, TSR, etc... so that the real mode program can call procedures
within the protected mode program.

In:
AX = 0303h
 DS:ESI = selector:offset of protected mode procedure to call
 ES:EDI = selector:offset of 32h byte buffer for real mode
register data structure to be used when calling the callback
routine.

Out:
if successful:
 carry flag clear
 CX:DX = segment:offset of real mode callback
 if failed:
 carry flag set

Remarks:
A descriptor may be allocated for each callback to hold the real mode SS descriptor. Real
mode callbacks are a limited system resource. A client should release a callback that it is no
longer using.

Function 0304 - Free Real Mode Callback Address

Releases a real mode callback address that was previously allocated with the Allocate Real
Mode Callback Address function (0303h).

In:
AX = 0304h
 CX:DX = segment:offset of real mode callback to be freed

Out:
if successful:
 carry flag clear
 if failed:
 carry flag set

TMT PASCAL
Developer Guide

95

Remark:
Real mode callbacks are a limited system resource. A client should release any callback that it
is no longer using.

Function 0305 - Get State Save/Restore Addresses

Returns the address of two procedures used to save and restore the state of the current task’s
registers in the mode (protected or real) which is not currently executing.

In:
 AX = 0305h

Out:
 always successful:
 carry flag clear
 AX = size of buffer in bytes required to save state
 BX:CX = segment:offset of real mode routine used to
save/restore state
 SI:EDI = selector:offset of protected mode routine used to
save/restore state

Remarks:
_ The real mode segment:offset returned by this function should be called only in real mode to
save/restore the state of the protected mode register The protected mode selector:offset
returned by this function should be called only in protected mode to save/restore the state of
the real mode registers.

Both of the state save/restore procedures are entered by a FAR CALL with the following
parameters:

 AL = 0 to save state
 = 1 to restore state
 ES:(E)DI = (selector or segment):offset of state buffer
The state buffer must be at least as large as the value returned in AX by INT 31h function
0305h. The state save/restore procedures do not modify an registers. DI must be used for the
buffer offset in real mode, EDI must be used in protected mode.

Some DPMI hosts and VCPI/XMS/raw will not require the state to be saved, indicating this
by returning a buffer size of zero in AX. In such cases, that addresses returned by this function
can still be called, although the will simply return without performing any useful function.

Clients do not need to call the state save/restore procedures before using INT 31h function
0300h, 0301h, or 0302h. The state save/restore procedures are provided for clients that use the
raw mode switch services only.

Function 0306 - Get Raw Mode Switch Addresses

Returns addresses that can be called for low level mode switching.

In:
 AX = 0306h

Out:
 always successful:
 carry flag clear
 BX:CX = segment:offset of real to protected mode switch
procedure

96
Programmer’s Reference

 SI:EDI = selector:offset of protected to real mode switch
procedure

Remarks:
The real mode segment:offset returned by this function should be called only in real mode to
switch to protected mode. The protected mode selector:offset returned by this function should
be called only in protected mode to switch to real mode.

The mode switch procedures are entered by a FAR JMP to the appropriate address with the
following parameters:

 AX = new DS
 CX = new ES
 DX = new SS
 (E)BX = new (E)SP
 SI = new CS
 (E)DI = new (E)IP
The processor is placed into the desired mode, and the DS, ES, SS, (E)SP, CS, and (E)IP
registers are updated with the specific values. In other words, execution of the client continues
in the requested mode at the address provided in registers SI:(E)DI. The values specified to be
placed into the segment registers must be appropriate for the destination mode. That is,
segment addresses for real mode, and selectors for protected mode.

The values in EAX, EBX, ECX, EDX, ESI, and EDI after the mode switch are undefined.
EBP will be preserved across the mode switch call so it can be used as a pointer. FS and GS
will contain zero after the mode switch.

If interrupts are disabled when the mode switch procedure is invoked, they will not be re-
enabled by the host (even temporarily). It is up to the client to save and restore the state of the
task when using this function to switch modes. This requires the state save/restore procedures
whose addresses can be obtained with INT 31h function 0305h.

Function 0400 - Get Version

Returns the version of the DPMI Specification implemented by the DPMI host. The client can
use this information to determine what functions are available.

In:
 AX = 0400h

Out:
 always successful:
 carry flag clear
 AH = DPMI major version as a binary number (VCPI/XMS/raw
returns 00h)
 AL = DPMI minor version as a binary number (VCPI/XMS/raw
returns 5ah)
 BX = flags:
 Bits Significance
 0 0 = host is 16bit (PMODE/W never runs under one
of these)
 1 = host is 32bit
 1 0 = CPU returned to V86 mode for reflected
interrupts
 1 = CPU returned to real mode for reflected
interrupts
 2 0 = virtual memory not supported
 1 = virtual memory supported
 3-15 reserved
 CL = processor type:

TMT PASCAL
Developer Guide

97

 03h = 80386
 04h = 80486
 05h = 80586
 06h-ffh = reserved
 DH = current value of master PIC base interrupt (low 8
IRQs)
 DL = current value of slave PIC base interrupt (high 8
IRQs)

Remark:
The major and minor version numbers are binary, not BCD. So a DPMI 0.9 implementation
would return AH as 0 and AL as 5ah (90).

Function 0500 - Get Free Memory Information

Returns information about the amount of available memory. Since DPMI clients could be
running in a multitasking environment, the information returned by this function should be
considered advisory.

In:
 AX = 0500h
 ES:EDI = selector:offset of 48 byte buffer

Out:
if successful:
 carry flag clear
 buffer is filled with the following information:
 Offset Length Contents
 00h 4 Largest available free block in bytes
 04h 2ch Other fields only supplied by DPMI
 if failed:
 carry flag set

Remark:
Only the first field of the structure is guaranteed to contain a valid value. Any fields that are
not supported by the host will be set to -1 (0ffffffffh) to indicate that the information is not
available.

Function 0501 - Allocate Memory Block

Allocates a block of extended memory.

In:
 AX = 0501h
 BX:CX = size of block in bytes (must be non-zero)

Out:
 if successful:
 carry flag clear
 BX:CX = linear address of allocated memory block
 SI:DI = memory block handle (used to resize and free
block)
 if failed:
 carry flag set

98
Programmer’s Reference

Remarks:
The allocated block is guaranteed to have at least DWORD alignment.

This function does not allocate any descriptors for the memory block. It is the responsibility
of the client to allocate and initialize any descriptors needed to access the memory with
additional function calls.

Function 0502 - Free Memory Block

Frees a memory block previously allocated with the Allocate Memory Block function
(0501h).

In:
 AX = 0502h
 SI:DI = memory block handle

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set

Remark:
No descriptors are freed by this call. It is the client’s responsibility to free any descriptors that
it previously allocated to map the memory block. Descriptors should be freed before memory
blocks.

Function 0503 - Resize Memory Block

Changes the size of a memory block previously allocated with the Allocate Memory Block
function (0501h).

In:
 AX = 0503h
 BX:CX = new size of block in bytes (must be non-zero)
 SI:DI = memory block handle

Out:
 if successful:
 carry flag clear
 BX:CX = new linear address of memory block
 SI:DI = new memory block handle
 if failed:
 carry flag set

Remarks:
After this function returns successfully, the previous handle for the memo block is invalid and
should not be used anymore.

It is the client’s responsibility to update any descriptors that map the memory block with the
new linear address after resizing the block.

TMT PASCAL
Developer Guide

99

Function 0800 - Physical Address Mapping

Converts a physical address into a linear address. This functions allows the client to access
devices mapped at a specific physical memory address.

In:
 AX = 0800h
 BX:CX = physical address of memory
 SI:DI = size of region to map in bytes

Out:
 if successful:
 carry flag clear
 BX:CX = linear address that can be used to access the
physical memory
 if failed:
 carry flag set

Remarks:
It is the caller’s responsibility to allocate and initialize a descriptor for access to the memory.

Clients should not use this function to access memory below the 1 MB boundary.

Function 0801 - Free Physical Address Mapping

Releases a mapping of physical to linear addresses that was previously obtained with function
0800h.

In:
 AX = 0801h
 BX:CX = linear address returned by physical address mapping
call

Out:
 if successful:
 carry flag clear
 if failed:
 carry flag set

Remark:
The client should call this function when it is finished using a device previously mapped to
linear addresses with function 0801h.

Function 0900 - Get and Disable Virtual Interrupt State

Disables the virtual interrupt flag and returns the previous state of it.

In:
 AX = 0900h

Out:
 always successful:
 carry flag clear
 AL = 0 if virtual interrupts were previously disabled
 AL = 1 if virtual interrupts were previously enabled

100
Programmer’s Reference

Remarks:
AH is not changed by this function. Therefore the previous state can be restored by simply
executing another INT 31h.

A client that does not need to know the prior interrupt state can execute the CLI instruction
rather than calling this function. The instruction may be trapped by a DPMI host and should
be assumed to be very slow.

Function 0901 - Get and Enable Virtual Interrupt State

Enables the virtual interrupt flag and returns the previous state of it.

In:
AX = 0901h

Out:
 always successful:
 carry flag clear
 AL = 0 if virtual interrupts were previously disabled
 AL = 1 if virtual interrupts were previously enabled

Remarks:
AH is not changed by this function. Therefore the previous state can be restored by simply
executing another INT 31h.

A client that does not need to know the prior interrupt state can execute the STI instruction
rather than calling this function. The instruction may be trapped by a DPMI host and should
be assumed to be very slow.

Function 0902 - Get Virtual Interrupt State

Returns the current state of the virtual interrupt flag.

In:
 AX = 0902h

Out:
 always successful:
 carry flag clear
 AL = 0 if virtual interrupts are disabled
 AL = 1 if virtual interrupts are enabled

Remark:
This function should be used in preference to the PUSHF instruction to examine the interrupt
flag, because the PUSHF instruction returns the physical interrupt flag rather than the
virtualized interrupt flag. On some DPMI hosts, the physical interrupt flag will always be
enabled, even when the hardware interrupts are not being passed through to the client.

Function EEFF - Get DOS Extender Information

Returns information about the DOS extender.

In:
AX = EEFFh

TMT PASCAL
Developer Guide

101

Out:
 if successful:
 carry flag clear
 EAX = 'PMDW' (504D4457h)
 ES:EBX = selector:offset of ASCIIZ copyright string
 CH = protected mode system type (0=raw, 1=XMS, 2=VCPI,
3=DPMI)
 CL = processor type (3=386, 4=486, 5=586)
 DH = extender MAJOR version (binary)
 DL = extender MINOR version (binary)
 if failed:
 carry flag set

Remarks:
In PMODE/W’s implementation of this function, the value returned in ES is equivalent to the
4G data selector returned in DS at startup.

This function is always successful under PMODE/W.

102
Programmer’s Reference

Appendix D

IDE Overview

TMT Pascal compiler comes with an IDE for Win32, which allows one to easily edit, compile
and execute applications for any target.

Features
• Tunable syntax highlighting.
• Multi-level undo buffer.
• Code templates.
• Clipboard history window.
• Comfortable multi-window editor, which allows one to edit and run sources.
• Up to 10 bookmarks.
• New Windows-based context-sensitive help system.
• ANSI/OEM character insertion table.
• Powerful search/replace engine, which allow to find specified text in open windows and

directories.
• Easy in use compiler options setup menu.
• Multi-target compilation support.
Restrictions
The built-in debugger is not implemented in the current version of IDEW32.

See also: Bookmarks, Code Templates, Compiler Options, Directories, Display, Editor,
Editor Shortcuts

D.1 Bookmarks

The Code Editor supports up to 10 bookmarks. Set your own bookmarks by right-clicking in
the Code editor and choosing the toggle Bookmarks. To jump to a bookmark, right-click and
choose Goto Bookmarks. You can also toggle bookmark #0 by left-clicking on the left
gutter.

The following bookmark operations shortcuts are available:

TMT PASCAL
Developer Guide

103

Shortcut Action ⋅⋅⋅⋅
Shift+Ctrl+0 Sets bookmark 0
Shift+Ctrl+1 Sets bookmark 1
Shift+Ctrl+2 Sets bookmark 2
Shift+Ctrl+3 Sets bookmark 3
Shift+Ctrl+4 Sets bookmark 4
Shift+Ctrl+5 Sets bookmark 5
Shift+Ctrl+6 Sets bookmark 6
Shift+Ctrl+7 Sets bookmark 7
Shift+Ctrl+8 Sets bookmark 8
Shift+Ctrl+9 Sets bookmark 9

Shortcut Action ⋅⋅⋅⋅
Ctrl+0 Goes to bookmark 0
Ctrl+1 Goes to bookmark 1
Ctrl+2 Goes to bookmark 2
Ctrl+3 Goes to bookmark 3
Ctrl+4 Goes to bookmark 4
Ctrl+5 Goes to bookmark 5
Ctrl+6 Goes to bookmark 6
Ctrl+7 Goes to bookmark 7
Ctrl+8 Goes to bookmark 8
Ctrl+9 Goes to bookmark 9

D.2 Code Templates (Options | Environment | Code Templates)

A set of templates is available to insert common programming statements into your code.
Templates can be edited and added. While working in the Code Editor, press Ctrl+J to display
the code templates defined.

To edit the name and description:
Select the name you want to edit. Click the Edit button. Edit the name and description fields
as needed and click OK.

To edit a template:
When a name is selected, the code to be inserted in the file when the template is selected is
displayed in the code window. Move the cursor to the code window and edit the text as you
desire.

To define the insertion point:
Place a vertical bar «|» in the code statement to define the point to begin insertion when the
template is inserted in a code file. The cursor will be placed in the point defined by the
vertical bar.

To add a template:
Click Add button. After entering a Name and Description in the dialog box displayed, click
OK.

To delete a template:
Select the name of the template you want to delete. Click Delete or press Del.

104
Programmer’s Reference

D.3 Compiler Options (Options | Compiler)

Primary file
Specify the primary file to be used for the target executable file.

Active Window
Check this box to set a currently active window as primary file.

Word alignment data
Switches on/off word-alignment of variables and typed constants. Corresponds to ($A).

Strict var-strings
Controls type-checking on strings passed as variable parameters. Corresponds to ($V).

Range checking
Enables and disables the generation of range-checking code. Corresponds to ($R).

Objects and structures align
Switches on/off word-alignment of objects and structures. Corresponds to ($OA).

Debug information (MS-DOS target only)
Switches on/off the generation of debug information. Corresponds to ($D).

I/O checking
Enables or disables the automatic code generation that checks the result of a call to an I/O
procedure. Corresponds to ($I).

Local debug symbols (MS-DOS target only)
Enables or disables the generation of local symbol information. Corresponds to ($L).

Open string params
Controls the meaning of variable parameters declared using string keyword. Corresponds to
($P).

Overflow checking (Q)
Controls the generation of overflow checking code. Corresponds to ($Q).

Typed pointers
Controls the types of pointer values generated by the @ operator. Corresponds to ($T).

Show warnings
Switches on/off warnings generation. Corresponds to ($W).

Extended syntax
Enables or disables Turbo Pascal’s extended syntax. Corresponds to ($X).

TMT PASCAL
Developer Guide

105

Extender logo (MS-DOS target only)
Switches on/off extender logo.

Complete Boolean eval
Switches on/off the two different models of code generation for the AND and OR Boolean
operators. Corresponds to ($B).

Frame optimization
Switches on/off stack frame optimization. Corresponds to ($OPTFRM).

Registers optimization
Switches on/off register optimization. Corresponds to ($OPTREG).

Full optimization
Switches on/off full optimization (Frame optimization + Registers optimization). Corresponds
to ($OPT).

C/C++ style comments
Switches on/off C/C++ style comments recognition. Corresponds to ($CC).

Ada-style comments
Aligns elements in structures to 32-bit boundaries. Corresponds to ($AC).

Intel MMX Assembler instructions
Enables/disables Intel MMX instructions support in built-in assembler. Corresponds to
($MMX).

AMD 3DNow! Assembler instructions
Enables/disables AMD 3DNow! Instructions support in built-in assembler. Corresponds to
($AMD).

Typed Inc/Dec operations
Enables/disables typed Inc/Dec operations on pointers. Corresponds to ($TPO).

Max EXE size
Specifies the maximum size of the executable module.

Stack size
Specifies the size of the application stack.

Max OBJ size
Specifies the size of the buffer for object modules (FPD/FPO/FPW-files). This parameter
must be about one and a half times the size of the largest object module from the project.

Max resource size
Specifies the size of the linking buffer for Windows resources (RES-files).

106
Programmer’s Reference

Target (Multi-target Edition Only)
A drop-down box which allows one to select a target Operating System.

D.4 Directories (Options | Directories)

Use this page to specify directories, compiler and stub names. Click the «...» button to run
directory browse window.

Root Path
Specifies directories where the TMT Pascal compiler has been installed. Default is
C:\TMTPL.

Stub name
Name of the stub file to be linked with a generated application.

Resource Compiler
Specifies a name of the command-line resource compiler.

Compiler
Specifies a name of the command-line TMT Pascal compiler.

Source Path
Specifies directories where the compiler looks for source files when it cannot find them.
Default is SRC:;SYS:..\UNITS.

Unit Path
Specifies directories where the compiler looks for RTL unit files when it cannot find them.
Default is SRC:;SYS:..\UNITS.

OBJ Path
Specifies directories where the compiler looks for OBJ files when it cannot find them. Default
is SRC:;SYS:..\UNITS.

D.5 Display (Options | Environment | Display)

Use the Color page of the Environment Options dialog box to specify how the different
elements of your code appear in the Code Editor.

You can specify foreground and background colors for anything listed in the Element list box.
The sample Code Editor shows how your settings will appear in the Code Editor.

Display | General
Use the General page of the Environment Options dialog box to select display and font
options for the Code Editor

TMT PASCAL
Developer Guide

107

Visible right margin
Check to display a line at the right margin of the Code Editor.

Right margin
Set the right margin of the Code Editor. The default is 80 characters.

Margin color
Select a color for the right margin.

Visible gutter
Check to display the gutter on the left edge of the Code Editor.

Gutter width
Set the width of the gutter in pixels.

Gutter color
Select a color for the gutter.

Left indent
Specify the left indent for the Editor.

Font name
Select a font type from the available screen fonts installed on your system (shown in the drop-
down box). The Code Editor displays and uses only fixed size screen fonts. A sample text is
displayed in the text box.

Font size
Select a Font name from the predefined font sizes associated with the font you selected in the
Font list box. A sample text is displayed in the text box.

Display | Syntax Highlighting
Use the Syntax Highlighting page of the Environment Options/Display dialog box to specify
the syntax highlighting scheme to be used in the Code Editor.

Element
Specifies syntax highlighting for a particular code element. You can choose from the Element
list or click the element in the sample Code Editor.

Color scheme
Enables you to quickly configure the color scheme using predefined color combinations. The
sample text box below shows how your settings will appear in the Code Editor. Predefined
color schemes are the following: Defaults, Classic, Borland Delphi, Microsoft Visual Studio,
Twilight, Ocean.

Foreground
Sets the foreground color for the selected code element.

108
Programmer’s Reference

Background
Sets the background color for the selected code element.

D.6 Editor (Options | Environment | Editor)
Use the Editor page of the Environment Options dialog box to customize the behavior of the
Code Editor.

Keystroke mapping
Use the Keystroke mapping to configure the editor.

Overwrite blocks
Replaces a marked block of text with whatever is typed next. If Persistent Blocks is also
selected, the text you enter is appended following the currently selected block.

Limit EOL
Limits the position of the cursor beyond the end-of-line character.

Force Cut and Copy enabled
Enables Edit|Cut and Edit|Copy, even when there is no text selected.

Undo after save
Allows you to retrieve changes after a save.

Find text at cursor
Places the text at the cursor into the Text To Find list box in the Find Text dialog box when
you choose Search|Find. When this option is disabled you must type in the search text, unless
the Text To Find list box is blank, in which case the editor still inserts the text at the cursor.

Highlight URLs
If URLs highlighting is enabled and if the text that is displayed in the Code Editor contains
URLs then they will automatically be highlighted. Please notice that if the URL is highlighted
then users can click on it and browse the corresponding Web location with the installed
browser.

Double click line
Highlights the line when you double-click any character in the line. If disabled, only the
selected word is highlighted.

Auto Indent mode
Positions the cursor under the first nonblank character of the preceding nonblank line when
you press Enter.

Backspace unindents
Aligns the insertion point to the previous indentation level (outdents it) when you press
Backspace, if the cursor is on the first nonblank character of a line.

TMT PASCAL
Developer Guide

109

Smart tab
Tabs to the first non-whitespace character in the preceding line. If Use Tab Character is
enabled, this option is off.

Disable dragging
Disables text-dragging feature.

Persistent blocks
Keeps marked blocks selected even when the cursor is moved, until a new block is selected.

Use syntax highlighting
Enables syntax highlighting. To set highlighting options, use the Colors page

Allow overwrite caret shape
Allows overwrite caret shape, when insert mode is disabled.

Enable group undo
Undoes your last editing command as well as any subsequent editing commands of the same
type, if you press Alt+Backspace or choose Edit|Undo.

Select text only
Limits a selection by the cursor to the end-of-line character.

Cursor beyond EOF
Positions the cursor beyond the end-of-file character.

Use system clipboard history
Allows the Code Editor to use the system clipboard.

Max horizontal pos
Specifies the maximum horizontal position in the Code Editor.

Spaces in tabs
Specifies the spaces number in the tabs.

Block indent
Specifies the number of spaces to indent a marked block. The default is 2.

Tab Stops
Sets the character columns that the cursor will move to each time you press Tab.

110
Programmer’s Reference

D.7 Editor Shortcuts

Shortcut Action or command
F1, Ctrl + F1 Topic Search
F3 Search|Search Again
F6 Displays the next window
Shift+F6 Displays the previous window

Ctrl+I Inserts a tab
Ctrl+L Search|Search Again
Ctrl+J Displays the code templates box
Ctrl+N Inserts a new line
Ctrl+R Search|Replace
Ctrl+S File|Save
Ctrl+T Deletes a word right
Ctrl+V Edit|Insert
Ctrl+W Deletes a word left

Ctrl+Y Deletes a line
Ctrl+Z Edit|Undo
Shift+Ctrl+Z Edit|Redo

End Moves to the end of a line
Home Moves to the start of a line
Enter Inserts a carriage return
Ins Turns insert mode on/off
Del Deletes the character to the right of the cursor

Backspace Deletes the character to the left of the cursor
Tab Inserts a tab
Space Inserts a blank space
Left Arrow Moves the cursor left one column, accounting for the autoindent

setting
Right Arrow Moves the cursor right one column, accounting for the autoindent

setting
Up Arrow Moves up one line
Down Arrow Moves down one line
Page Up Moves up one page
Page Down Moves down one page

Ctrl+Alt+F Searches word at cursor
Ctrl+Left Arrow Moves one word left
Ctrl+Right Arrow Moves one word right
Ctrl+Home Moves to the top of a screen
Ctrl+End Moves to the end of a screen
Ctrl+PgDn Moves to the bottom of a file
Ctrl+PgUp Moves to the top of a file
Ctrl+Backspace Move one word to the right

Ctrl+Space Inserts a blank space
Ctrl+Enter Opens file at cursor
Ctrl+Tab Moves to the next page
Ctrl+Shift+I Indents Block
Ctrl+Shift+U Outdents Block
Ctrl+Shift+Y Deletes to the end of line

Shift+Tab Inserts a tab

TMT PASCAL
Developer Guide

111

Shift+Backspace Deletes the character to the left of the cursor
Shift+Left Arrow Selects the character to the left of the cursor
Shift+Right Arrow Selects the character to the right of the cursor
Shift+Up Arrow Moves the cursor up one line and selects from the left of the

starting cursor position

Shift+Down Arrow Moves the cursor down one line and selects from the right of the
starting cursor position

Shift+PgUp Moves the cursor up one screen and selects from the left of the
starting cursor position

Shift+PgDn Moves the cursor down one line and selects from the right of the
starting cursor position

Shift+End Selects from the cursor position to the end of the current line
Shift+Home Selects from the cursor position to the start of the current line

Shift+Space Inserts a blank space
Shift+Enter Inserts a new line with a carriage return
Shift+Ctrl+Tab Moves to the previous page

Ctrl+Shift+Left Arrow Selects the word to the left of the cursor

Ctrl+Shift+Right
Arrow

Selects the word to the right of the cursor

Ctrl+Shift+Home Selects from the cursor position to the start of the current file
Ctrl+Shift+End Selects from the cursor position to the end of the current file
Ctrl+Shift+PgDn Selects from the cursor position to the bottom of the screen
Ctrl+Shift+PgUp Selects from the cursor position to the top of the screen
Ctrl+Shift+Tab Moves to the previous page

Alt+Backspace Edit|Undo

Hint:
When selecting, hold Alt to select a vertical block.

See also: Bookmarks

	Contents
	The TMT Pascal Language Description
	Features
	Implementation Issues
	Pascal Language Structure
	Types
	Declarations
	Expressions
	Statements
	Programs and Units
	Dynamic-Link Libraries (DLL’s)
	Procedures and Functions
	OOP Extensions
	Open Arrays
	User Defined Operators
	Built-in Assembler
	Standard Units

	Win32 Programming
	Writting Win32 GUI Applications
	Structure of Window Procedure
	Designing a Window Procedure
	Associating a Window Procedure with a Window Class
	Example of a Win32 GUI Application
	Writting Win32 Control Panel Applications
	Application Responsibilities and Operation
	Application Entry-Point Function

	Appendix
	Appendix A - Compiler Directives
	Conditional directives
	Switch and Parameter Directives
	Predefined Symbols

	Appendix B - Run-time Error Codes
	Appendix C - PMODE/W DOS Extender
	About PMODE/W
	Supported DPMI INT 31h functions

	Appendix D - IDE Overview
	Bookmarks
	Code Templates
	Compiler Options
	Directories
	Display
	Editor
	Editor Shortcuts

